Linear Equations

Monday, January 4, 2021 9:20 AM

$$
\begin{vmatrix}\na_{11} & \gamma_1 & \vdash a_{12} & \gamma_2 & \vdash \ldots & \vdash a_{1n} & \gamma_n & = b, \\
a_{21} & \gamma_1 & \vdash a_{22} & \gamma_2 & \vdash \ldots & \vdash a_{2n} & \gamma_n & = b, \\
\vdots & \vdots &
$$

System Consistency

Monday, January 4, 2021 9:34 AM

 ρ_{e} f A linear system is consistent it it has at least
one solution Otherwise it is inconsistent.

Matrix

Monday, January 4, 2021 9:36 AM

Solving Linear Systems

Monday, January 4, 2021 9:43 AM

I. Adding a multiple of one equation to another 2. Interchange two equations. 3. Multiply an equation by a non O constant

Elementary Row Operations

Monday, January 4, 2021 9:45 AM

Row Echelon Forms

Wednesday, January 6, 2021 9:46 PM

Gaussian Elimination

Wednesday, January 6, 2021 10:02 PM

$$
\begin{bmatrix} 0 & 0 & 2 & -0 & -1 \\ 0 & -3 & 3 & -3 & -6 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} -2R_1 + R_2 \rightarrow R_2 & 2eros & below & 6 \\ -2R_1 + R_3 \rightarrow R_3 & 0 & 0 \end{bmatrix}
$$

$$
\begin{bmatrix}\n+\frac{3}{2} \\
0 \\
0 \\
0 \\
0 \\
0\n\end{bmatrix}\n\begin{bmatrix}\n2 & -8 & -4 \\
2 & -8 & -4 \\
0 & 3 & -3 & -6 \\
0 & 0 & 0 & 0\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\n+\frac{3}{2} \\
0 & -8 & -2 & -8 \\
0 & 0 & 0 & 0\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\n0 & -2 & -8 & -4 \\
0 & 3 & 3 & -8 & -6 \\
0 & 0 & 0 & 0 & 0\n\end{bmatrix}
$$

$$
\begin{array}{c|c}\n1 & 0 & 1 & 2 & 3 \\
0 & -3 & 3 & -3 & -6 \\
0 & 0 & 2 & -8 & -4 \\
0 & 0 & 0 & 0 & 0\n\end{array}
$$
 7e²

$$
\begin{bmatrix} 10123 \\ 0-33-36 \\ 000000 \end{bmatrix} \xrightarrow{\text{Step 5}}
$$

$$
\begin{bmatrix}\n10 & 1 & 2 & 3 \\
0 & -3 & 3 & -3 & -6 \\
0 & 0 & 1 & -4 & -2 \\
0 & 0 & 0 & 0\n\end{bmatrix}\n\begin{matrix}\n1 \\
\frac{1}{2}R_3 \\
\frac{1}{2}R_5\n\end{matrix}\n\rightarrow\nR_3
$$

 $R_2 \leftarrow R_3$ $(\{\{u\},\{v\},\{\{v\}\})$

$$
\begin{bmatrix}\n10000 & 3 & 0 & 0 & 5 \\
0 & -3 & 0 & 9 & 0 \\
0 & 0 & 1 & -4 & -2 \\
0 & 0 & 0 & 0\n\end{bmatrix}
$$
\n
$$
-R_{3} + R_{1} - R_{1}
$$
\n
$$
\begin{bmatrix}\n100065 \\
010-30 \\
001-4-2 \\
00000\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\n100065 \\
010-30 \\
001-4-2 \\
00000\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\n1 & 0 & 0 & 0 & 5 \\
0 & 1 & -4 & -2 \\
0 & 0 & 0 & 0\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\n1 & 0 & 0 & 0 & 0 \\
0 & 1 & -4 & -2 \\
0 & 0 & 0 & 0\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\n1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0\n\end{bmatrix}
$$

Solutions, Existence, Uniqueness
Wednesday, January 6, 2021 190:28 PM

For
$$
a-y=3
$$
 $-2y=6$

\n
$$
-2x+2y=-6
$$
\n
$$
-22+6
$$
\n
$$
-26+2y=-6
$$
\n
$$
-22+6
$$
\n
$$
-26+8z-8
$$
\n
$$
-26+2y=6
$$
\n
$$
-22+6
$$
\n
$$
-26+8z-8
$$
\nSo, $a=3$ $a+3$ $a+3$ <

 $\sim 10^7$

2) Infinitely many solutions, there is a free variable.

Vectors

Saturday, January 9, 2021 4:13 PM

Def. \mathbb{R}^n is the set of all ordered n-tuples of real numbers. $\mathbb{R}^n = \{ (u_1, u_2, ..., u_n) | u_i \in \mathbb{R} \text{ for } i \in n \}$ \overrightarrow{u} , \overrightarrow{v} in \mathbb{R}^n are equal it $u_i = v_i$ for leien We will call elements in Rⁿ as vectors $Note: Eraise: 1ex \fbox{\footnotesize{in}}$ $\begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$ Column $\begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix}$ Row Vector $(1+n)$
 $\begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$ $(n \times 1)$ $\mu^{\prime\prime}$ x ϵ $A^{\prime\prime}$ means that x is an element in the set A

Vector Operations

Saturday, January 9, 2021 4:21 PM

$$
\frac{\text{Addition}}{u+v} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \end{bmatrix} + \begin{bmatrix} v_1 \\ v_2 \\ \vdots \end{bmatrix} = \begin{bmatrix} u_1 - v_1 \\ u_2 + v_2 \\ u_1 + v_2 \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{
$$

\n $\frac{\text{Scalar M.}(i) \text{J.}(\text{a} \text{L.})}{\text{C.} \text{L.}} = \text{C.} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} c \cdot u_1 \\ c \cdot u_2 \\ \vdots \end{bmatrix} \begin{bmatrix} 2 \cdot e_1 \\ 2 \cdot e_2 \\ \vdots \end{bmatrix}$ \n

Property of Vectors

Saturday, January 9, 2021 4:25 PM

Let
$$
\vec{u} \cdot \vec{v} \cdot \vec{w} \in \mathbb{R}^n
$$
 and $c \cdot d$ be scalars
\n1) (Addition is commutative) $\vec{w} \cdot \vec{v} = \vec{v} \cdot \vec{w}$
\n2) (Addition is associated: $(\vec{u} \cdot \vec{v}) \cdot \vec{w} = \vec{u} \cdot (\vec{v} \cdot \vec{w})$
\n3) (Additive identity exists) $\vec{u} \cdot \vec{0} = \vec{u}$
\n4) (Additive inverse exists) $\vec{u} \cdot (-\vec{u}) = \vec{0}$
\n5) $c(\vec{w} \cdot \vec{v}) = c\vec{u} \cdot c\vec{v}$
\n6) $(c \cdot d) \vec{w} = c\vec{w} \cdot d\vec{w}$
\n7) $c(d\vec{w}) = (cd) \vec{w}$
\n8) $1 \vec{w} = \vec{w}$

Linear Combination

Saturday, January 9, 2021 4:34 PM

Test:

\n
$$
\int e^{x} e^{x} \, dx
$$
\nis a linear combination of V_1, V_2, \ldots, V_p of P

\nis the $e^{x_1}e^{x_2} \ldots e^{x_p}e^{x_p}$

\nis the $e^{x_1}e^{x_2} \ldots e^{x_p}e^{x_p}$

\nis a $e^{x_1}e^{x_2} \ldots e^{x_p}$

Span

Saturday, January 9, 2021 4:47 PM

Def. The span of v. ...
$$
\overline{v_p} \in \mathbb{R}^n
$$
 is the set of all
\nlinear combinations of $\overline{v_p}$.

\nSpan $\{ v, ..., v_p \}$ = $\{ c, v, + c_p v_p \}$ is the set of all
\n*The set* is spanned/genended by $\overline{v_p}$ and $\overline{v_p}$

 $Ax = b$ Wednesday, January 13, 2021 12:25 PM

Let
$$
6\pi
$$
 one vectors equation α , a^2 and 6π and $b^2 = b^2$

\nLet can be required as:

\n
$$
\begin{bmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \end{bmatrix} \cdot \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = b
$$
\nand has the same solution set as:

\nSince as is the same solution of the column is given.

\nThe matrix equation $Ax^3 = b^3$ has an solution of the columns of A .

\nTherefore, $ax + bx + bx + c = 1$ and $ax + bx + c = 1$ and $ax + bx + c = 1$.

\nTheorem Let A be an matrix, then the following theorem is to be the sum of the column is the sum

1) for any
$$
6 \in \mathbb{K}
$$
, $4\pi^3 = 5$ has a solu-
2) Every 5 in \mathbb{R}^n is a linear combination of cells 4
3) Columns of 4 span \mathbb{R}^m (ie $Spun\{\vec{a}, ... \vec{a_n}\} = \mathbb{R}^m$)
4) 4 has a pivot position in every row.

Identity Matrix

Wednesday, January 13, 2021 12:44 PM

Def. An identity matrix In is an nun matrix with I's on the diagonal starting trom the apper left corner and O's everywhere else.

$$
I_n \approx = \propto
$$

In outs like 1 in multiplication

Solutions of Homogenous Systems

Wednesday, January 13, 2021 12:47 PM

Deß.	A linear system	is homogeneous	A null constant terms
ave zero.	$Ar\overline{a} = \overline{0}$	Now, $arcsin\overline{a} = \overline{0}$	consistent.
Deß.	The trivial solution of $Ar\overline{a} = \overline{0}$ is any solution of $\overline{0}$		
1. Theorem	$A\overline{a} = \overline{0}$ has an nonzero solution of $Ar\overline{a} = \overline{0}$		
1. Theorem	$A\overline{a} = \overline{0}$ has an nonzero solution of $Ar\overline{a} = \overline{0}$		
1. Theorem	$A\overline{a} = \overline{0}$ has an nonzero solution of $Ar\overline{a} = \overline{0}$		
1. Theorem	$5a, ppsic$ that $A\overline{a} = \overline{b} = \overline{0}$ is considered of let $\overline{a} = \overline{0}$		
1. Theorem	$5a, ppsic$ that $A\overline{a} = \overline{b} = \overline{0}$ is an solution of $A\overline{a} = \overline{0}$		
1. Theorem	$5a, ppsic$ that $A\overline{a} = \overline{0}$	$5a, pspic$	$5a, pspic$
1. Theorem	$5a, pspic$	$5a, pspic$	$5a, pspic$
1. Theorem	$5a, pspic$	$5a, pspic$	$5a, pspic$
1. Theorem	$5a, pspic$		

Linear Dependence/Independence

Sunday, January 17, 2021 4:58 PM

Theorems

Sunday, January 17, 2021 5:24 PM

Sob will Example the
\n
$$
\begin{array}{llll}\n\text{Sob } \omega / \text{grad} \text{Cg} & \text{One} & \text{befor} \\
\hline\n2 \nabla^2 3 & \text{is} & \text{LT} & \text{if } \mathcal{T} \neq \mathcal{T} \\
\hline\n\end{array}
$$
\n
$$
\begin{array}{llll}\n\text{Sob } \omega / \text{grad} \text{Cg} & \text{Sob } \text{Cg} & \text{Sob } \text{Cg} \\
\hline\n\end{array}
$$
\n
$$
\begin{array}{llll}\n\text{Sob } \omega / \text{Gog } \text{Sg} & \text{is} & \text{LD} & \text{if } \omega & \text{least} & \text{one} & \text{vector} & \text{is} & \text{as} & \text{small.} \\
\hline\n\end{array}
$$
\n
$$
\begin{array}{llll}\n\text{Sob } \omega / \text{T} \omega_{0} & \text{or} & \text{More } \text{Vee} & \text{Sose} \\
\hline\n\end{array}
$$
\n
$$
\begin{array}{llllll}\n\text{Theorem} & \text{Coh} & \text{Coh} & \text{Coh} & \text{Coh} \\
\hline\n\end{array}
$$
\n
$$
\begin{array}{llllll}\n\text{Theorem} & \text{Cob} & \text{Sob } \text{Cg} & \text{Sob } \text{Cg} & \text{Sob } \text{Cg} & \text{Sob } \text{Cg} \\
\hline\n\end{array}
$$
\n
$$
\begin{array}{llllll}\n\text{Theorem} & \text{The solution of} & \text{Sob } \text{Sob } \text{Cg} & \text{Sob } \text{Cg} \\
\hline\n\end{array}
$$
\n
$$
\begin{array}{llllllll}\n\text{Theorem} & \text{The columns of a matrix } A & \text{one} & \text{Lg} & \text{Sob } \text{Sob } \text{Sob } \text{Cg} \\
\hline\n\end{array}
$$
\n
$$
\begin{array}{llllllll}\n\text{Theorem} &
$$

Matrix Transformation

Wednesday, January 20, 2021 7:24 PM

Def. A transformation / func *tion / mapping* from
$$
\mathbb{R}^n
$$
 to \mathbb{R}^m
is a rule that $assigns$ to each $\overline{\mathcal{X}} \in \mathbb{R}^m$ *exactly* are
vector $T(\overline{\mathcal{X}}) \in \mathbb{R}^m$

Nobaction:	T: $\mathbb{R}^n \rightarrow \mathbb{R}^m$	
Domain	1	1
$\overrightarrow{n} \rightarrow \overrightarrow{(1\overrightarrow{x})} \leftarrow \overrightarrow{image}$ of \overrightarrow{x} under T		
$\varepsilon \mathbb{R}^n$	$\varepsilon \mathbb{R}^m$	
Range of $T = \sum T(\overrightarrow{x}) \mid \overrightarrow{x} \in \mathbb{R}^n$		
9.2	1. $\mathbb{R}^n \rightarrow \mathbb{R}^m$	
10.3	1. $\mathbb{R}^n \rightarrow \mathbb{R}^m$	
10.4	1. $\mathbb{R}^n \rightarrow \mathbb{R}^m$	
10.5	1. $\overrightarrow{R} \rightarrow \overrightarrow{AR}$	2. $\overrightarrow{SP} \rightarrow \overrightarrow{SP} \rightarrow \mathbb{R}^m$
11. $\overrightarrow{n} \rightarrow \overrightarrow{AR} \rightarrow \overrightarrow{AR}$	3. $\mathbb{R}^n \rightarrow \mathbb{R}^m \rightarrow \mathbb{R}^m$	
12. $\overrightarrow{SP} \rightarrow \overrightarrow{AR}$	4. $\mathbb{R}^n \rightarrow \mathbb{R}^m \rightarrow \mathbb{R}^m \rightarrow \mathbb{R}^m$	
13. $\mathbb{R}^n = \mathbb{R}^n$	5. $\mathbb{R}^n \rightarrow \mathbb{R}^m \rightarrow \mathbb{R}^m$	
14. $\mathbb{R}^n = \mathbb{R}^m$	6. $\mathbb{R}^n = \mathbb{R}^m$	
15. \mathbb		

Linear Transformations

Wednesday, January 20, 2021 7:42 PM

$$
Def. A transformation T: V \rightarrow W \text{ is linear if}
$$
\n
$$
1) T(\vec{u}+\vec{v}) = T(u) + T(v) / \vec{v}, \vec{v} \in V
$$
\n
$$
2) T(c\vec{w}) = cT(\vec{u}) / \vec{u} \in V, \text{ any scalar } c
$$

Theorem	For any linear	transformation, T: V \rightarrow W
(1) T(5) = 5		
2) T(1, 5) = 3		
2) T(1, 5) = 4, 4(5, 6)		
3or any vectors	5, ..., $\overrightarrow{v_p} \in V \notin S$ (class 1, ..., 5)	

Standard Matrix

Wednesday, January 20, 2021 7:59 PM

Notation : In
$$
\mathbb{R}^n
$$
, \overrightarrow{e}_j^o is the vector whose jth entry is one
with 0 's everywhere else. Also are columns of the identity matrix.
 $\overrightarrow{e}_1 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ $\overrightarrow{e}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ (..., $\overrightarrow{e}_n = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

Theorem Let T:
$$
\mathbb{R}^n \to \mathbb{R}^m
$$
 be a linear transformation. Then there
\nexists a unique matrix A such that:
\n $T(\vec{x}) = A\vec{x}$ for any $\vec{x} \in \mathbb{R}^n$
\nIn fact, A is the max matrix whose jbh column
\nis $T(\vec{e}_j)$:
\n $A = [T(\vec{e}_j)]$
\nThis is called the standard matrix for T
\nLinear transformations are completely determined on how they are
\non the standard basis vectors $(\vec{e}_1, ..., \vec{e}_n)$

Onto and One-to-One

Wednesday, January 20, 2021 8:09 PM

Det	1: $\mathbb{R}^n \rightarrow \mathbb{R}^m$ is onto if every $\vec{b} \in \mathbb{R}^m$ is the image of the <u>de</u> <u>le</u> <u>le</u> <u>we</u> <u>we</u> <u>we</u> <u>we</u> <u>we</u> <u>we</u> <u>we</u> \n
1: $\mathbb{R}^n \rightarrow \mathbb{R}^m$ is one-to-one if each vectors $\vec{b} \in \mathbb{R}^m$ is the image of <u>we</u>	
1: $\mathbb{R}^n \rightarrow \mathbb{R}^m$ be a linear transformation. Then the <u>me</u> <u>the</u> <	

Special Matrices and Equality

Sunday, January 24, 2021 6:55 PM

$$
A_{nm} = \begin{bmatrix} a_{11} & q_{12} & q_{13} & \dots & q_{1n} \\ q_{21} & q_{22} & q_{23} & \dots & q_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ q_{m1} & q_{m2} & q_{m3} & \dots & q_{mn} \end{bmatrix} \quad \begin{array}{c} a_{ij} = \text{entry in the } i\text{th von and} \\ \text{jth column of } A \\ \vdots \\ a_{11} \cdot a_{22} \cdot a_{33} & \dots & \vdots \\ \vdots \\ a_{m1} \cdot a_{22} \cdot a_{33} & \dots & \vdots \\ \vdots \\ a_{mn} \cdot a_{mn} \end{array}
$$

Def A diagonal matrix is a square matrix whose non diagonal entries are zero.

\nA zero matrix (denoted by 0), is a matrix whose matrix are all zeros.

\nTwo matrix matrices A * B are equal if

\n
$$
(\bigcup_{i,j} = (B)_i, \text{ for all } i \in i \in m, i \in I \subseteq j \le n
$$

Matrix Operations

Sunday, January 24, 2021 7:00 PM

Matrix Multiplication

Sunday, January 24, 2021 7:13 PM

Running	
$T(\vec{x}) = A\vec{x}$	
$U(\vec{x}) = B\vec{x}$	
The compression	$[\circ \cup : R^{n} - R^{m}]$ is defined by
$R^{p} - R^{n}$	
$(T \circ U)(\vec{x})$ or $(TU)(\vec{x}) = T(U(\vec{x})) = T(B(\vec{x})) = A(B\vec{x})$	
$= A(x, E_{i}^{*} + \gamma_{k} E_{i}^{*} + \cdots + \gamma_{p} E_{p}^{*})$	
$= A(x, E_{i}^{*}) + \cdots + A(\gamma_{p} E_{p})$	
$= \gamma_{i}(A E_{i}^{*}) + \cdots + \gamma_{p}(A E_{p}^{*})$	
$= A^{p}B$ or AB	
$Q = A B$	

Properties of Matrix Multiplication

Sunday, January 24, 2021 7:20 PM

Let A be an n'n matrix
$$
\frac{1}{5}B,C
$$
 be matrices so that the
\nSollaving sums $\frac{1}{5}p_{3}$ due to desired:
\n1) $A(BC) = (AB)C$
\n2) $A(B+C) = AB + AC$
\n3) $CB + C)A = BA + CA$
\n4) For any scalar r, r $(AB) = (rA)B = A(rB)$
\n5) $T_{m}A = A = I_{n}$
\nHowever, in general:
\n1) $AB \neq BA$
\n2) $AB = AC \nless B = C$
\n3) $AB = O \nless A = O$ or $B = O$

Transpose

Sunday, January 24, 2021 7:27 PM

Det Let A be asquare matrix & K be a positive integer. Then $A^{k} = A \cdot \cdot \cdot A$ K copies Det Let A be an m×n matrix. The <u>transpose</u> of A (denoted A^T)
is the n×m matrix whose ith column is the *i*th row of A. That is, $(A^{\tau})_{ij} = A_{ji}$ Properties of transpose 1) $(A^T)^T = A$ 2) $(A+B)^{T} = A^{T} + B^{T}$ 3) For any scalar $r, (rA)^T = r(A^T)$ 4) $(AB)^T = B^T A^T$

Inverse

Wednesday, January 27, 2021 9:49 PM

Oed An $n \times n$ matrix A is invertible/non singular if there exists

an $n \times n$ matrix such that $AC = I$ of $CA = I$ \mathcal{D}_{ϵ} an $n \times n$ matrix such that $n \times 1$ and $\frac{1}{2}$
If such a (exists, then it is unique $\frac{1}{5}$ we call it the
<u>inverse</u> of A_1 densted A^{-1} If A is not invertible, we say that A is singular Theorem Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ Let $de^{t}(A) = ad-bc$. Then A is invertible iff $deCA) \neq 0$ A is invertible if $de(A) \neq 0$
 $I \neq A$ is invertible, then $A^{-1} = \frac{1}{det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$

Properties of the Inverse

Wednesday, January 27, 2021 9:57 PM

Thesrem. If A is an invertible nan matrix, then
$$
Sec
$$
 such

\n
$$
\overrightarrow{B} \in \mathbb{R}^{n}
$$
, $A\overrightarrow{x} = \overrightarrow{b}$ has the unique soln. $\overrightarrow{x} = A^{-1}\overrightarrow{b}$ \nTheorem Let A\n $\overrightarrow{A} \in B$ be invertible $n \times n$ matrices. Then

\n1) A^{-1} is invertible $\overrightarrow{A}(A^{-1})^{-1} = A$

\n2) AB is invertible $\overrightarrow{A}(AB)^{-1} = B^{-1}A^{-1}$

\n3) A^{-1} is invertible $\overrightarrow{A}(A^{-1})^{-1} = (A^{-1})^{T}$

\nUse: $A \cdot A^{-1} = I \xrightarrow{\text{in}} A^{-1} \cdot A = I$ where the same

Invertibility and Elementary Matrices

Wednesday, January 27, 2021 10:02 PM

Theorem II A, A, ..., A, are invertible non matrices
\nthen A, A, ..., A, is invertible
$$
\xi
$$
 CA, A, ..., A, ξ = A, ..., A⁻¹ A⁻¹
\n 0.4 An $n \times n$ elementary matrix is obtained by performing a
\nsingle elementary row operation to I,
\n 0.7 $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$
\n $-2R_1 + R_2 + R_2$ $R_1 \leftrightarrow R_2$ $R_2 \leftrightarrow R_2$ $3R_2$
\n $\begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 \\ 0 & 3 \end{bmatrix}$
\nWhen you multiply a matrix by an elementary matrix:
\n $EA = the matrix obtained by performing the same row operation
\ndone on E to A$

Wednesday, January 27, 2021 10:09 PM

$$
E^{-1} = elementary matrix corresponding to the elementary row operation,that will reproduce I. Copposite of the first row operation,These A has is invertible if A is row equivalent to In.value: $A^{-1} = (E^{-1} \dots E^{-1})^{-1} = E_p \dots E_1 = E_p \dots E_1 \cdot I$
$$
Calculating Inverse

Wednesday, January 27, 2021 10:16 PM

 $\frac{H_{ow}$ to find A^{-1}
It possible, row reduce [AII] to [I] A^{-1}]

Invertible Matrix Theorem

Wednesday, January 27, 2021 10:21 PM

Theorem . (Inverible)	Matrix	Theorem
Let A be an <i>n</i> -an <i>metric Then the Solowing stabement are equivalent</i>		
1) A is invertible	7) $A\overline{x}^2 = \overline{b}$ <i>has a solution for</i> $\overline{b}^2 \overline{c} \overline{R}^n$	
2) A $\sim I_n$ (<i>row equivalent</i>)	8) Columns of A span \overline{R}^n	
3) A has a prioro to positive <i>positive</i>	9) $\overline{x} \mapsto A \overline{x}^2$ is onto	
4) $A \overline{x}^2 = \overline{0}$ has only trivial soln	10) There's some C such that $CA = I_n$	
S) Columns of A are LZ	11) There's $D_{n,n}$ such that $AD = I_n$	
6) $\overline{x} \mapsto A \overline{x}^2$ is one-to-one	12) A^T is invertible	

Invertible Linear Transformations

Wednesday, January 27, 2021 10:27 PM

Let the map
$$
T: \mathbb{R}^n \to \mathbb{R}^n
$$
 is invertible if there exists $S: \mathbb{R}^n \to \mathbb{R}^n$

\nSuch that $T(S(\vec{x})) = \vec{x}$ is $S(T(\vec{x})) = \vec{x}$ for all $\vec{x} \in \mathbb{R}^n$

\nIn this case, S is unique if we call it the inverse of

\n T , denoted T^{-1}

\nThese sum to be a linear transformation of standard matrix.

A, then T is invertible iff A is invertible.
• In this case, then T'' is a linear transformation
$$
\xi
$$
 its
Standard matrix is A^{-1}

Vector Space Properties

Tuesday, February 2, 2021 6:29 PM

Def	A vector space is a nonampby set V of objects, called vectors, will a set of scalars (e.g., R), é operations called add. form \vec{e} scalar multiplication satisfy the Soloning;\n
1) $\vec{w} + \vec{v} \in V$ is closed under addition 2) $\vec{u} + \vec{v} \in V$ is closed under addition	
2) $\vec{u} + \vec{v} = \vec{v} + \vec{w}$ is additional is commutative	
3) $(\vec{w} + \vec{v}) + \vec{w} = \vec{w} + (\vec{v} + \vec{w})$ is additive	
4) There is some $\vec{0} \in V$ such that $\vec{w} + \vec{0} = \vec{w}$ is additive identity exists in V	
5) For each $\vec{w} \in V$ there is $-\vec{w} \in V$ such that $\vec{w} + \vec{w} = \vec{0}$ is added:ive inverse exists in V	
6) $c\vec{w} \in V$ is closed under scalar multiplication	
7) $c(\vec{w} \cdot \vec{v}) = c\vec{w} + c\vec{v}$	
8) $(c \cdot d) \vec{w} = c\vec{w} + d\vec{v}$	
9) $c(d\vec{w}) = (cd) \vec{w}$	
10) $1 \vec{w} \in \vec{w}$	

Zero Vector and Inverse Properties

Tuesday, February 2, 2021 6:38 PM

Examples of Real Vector Spaces

Tuesday, February 2, 2021 6:39 PM

Some Examples of (Real) Vector Spares

Vector Subspaces

Tuesday, February 2, 2021 6:51 PM

DeS. A subspace of a vector space V is a subset H of V such that:

\n\n- a)
$$
\vec{O} \in H
$$
\n- b) If $\vec{a}, \vec{v} \in H$, then $\vec{u} \cdot \vec{v} \in H$
\n- c) If $\vec{a}, \vec{v} \in H$, c scalar, $c\vec{w} \in H$
\n
\n3) A subspace of V is a subset which is a vector space

Subspace Spanned by a Set

Tuesday, February 2, 2021 7:51 PM

Theorem. Let V be a vector space. If
$$
\overline{v_1}^3
$$
 and $\overline{v_2}^3$ is a subspace of V.

\nQ. 5. The subspace generated/s bounded by $\overline{v_1}^3$ is $\overline{v_1}^3$ and $\overline{v_2}^3$.

\nSpan $\overline{v_1}^3$ and $\overline{v_2}^3$.

\nIf H is a subspace of V $\overline{v_1}^2$ is a generalized (symmetric) and (symmetric) of V.

\nSt, $\overline{v_1}^3$ is a generalized (s spanning for H).

Null, Column, Row Spaces

Tuesday, February 2, 2021 7:57 PM

$$
De\frac{1}{2} + Le + A be an man matrix. The null space of A is\n[Na] $A = \frac{2}{3} \times e$ Rⁿ | $A \overline{x} = \overline{0} \overline{3}$
\n**Theorem.** I + A is an man matrix, then $N_{n} | A$ is
\na subspace of Rⁿ
$$

Let A be an
$$
m \times n
$$
 matrix. The column space of A is

\nCol A = Span $\{ \overline{a}, \dots, \overline{a}_n \} = \{ \overline{b} \in \mathbb{R}^m | A \overline{x} = \overline{b} \}$ so $\overline{x} \in \mathbb{R}^n \}$

\nTheorem: If A is an $m \times n$ matrix, then col A is

\na $subspace$ of R

Let
$$
H
$$
 be an max matrix. The row space of A is

\nNow $A = Span \Sigma T$, ... $T_m \Sigma$

\nTherefore: $T + A$ is an max matrix, then $R_{2m}A$ is

\n α subspace of R ⁿ

Kernel, Range of Linear Transformation

Tuesday, February 2, 2021 8:14 PM

Recall	A	linear transformation	is a map	$T: V \rightarrow W$
where	V \notin W are vector spaces such that			
$T(\vec{\omega} \cdot \vec{\nu}) = T(\vec{\omega}) - T(\vec{\nu})$				
$T(\vec{\omega} \cdot \vec{\nu}) = cT(\vec{\omega})$				
Qef.	The	kenel/nullspace of	T: V \rightarrow W is the set	
$\frac{1}{2} \vec{v} \in V \mid T(\vec{v}) = \vec{0} \cdot \vec{0}$				
The	range of	T is the set	$\frac{1}{2}T(\vec{\omega}) \vec{\omega} \in V\}$ or equivalently,	
$\frac{1}{3} \vec{g} \in W \mid T(\vec{\omega}) = \vec{g} \cdot \vec{\omega} \in V \cdot \vec{0}$				
kenel/nullspace: $Nul(A)$ range: $Col(A)$				
Theorem	If	T: V \rightarrow W is a linear transformation, then the	kene	
of	T is a subspace of V \notin the range	is also a		
subspace of W.				

Linear Independence/Dependence

Thursday, February 4, 2021 10:09 PM

Def	A subset	$\Sigma \nabla_i$... $\nabla_p \nabla_g$ of a vector space V is linearly independent if $C_i \nabla_i + ... + C_p \nabla_p = \overrightarrow{O}$ has only the trivial solution.
Otherwise	if $C_i \nabla_i + ... + C_p \nabla_p = \overrightarrow{O}$ and at least one non- ω is a linear algebra of the equation.	
is a linear dependence relation.		
is a linear dependence relation.		
exists	if $\nabla_i \neq \overrightarrow{O}$	
exists	if $\nabla_i \neq \overrightarrow{O}$	
exists	if $\nabla_i \neq \overrightarrow{O}$	
exists	if $\nabla_i \neq \overrightarrow{O}$	
exists	if $\nabla_i \neq \overrightarrow{O}$	
exists	if $\nabla_i \neq \overrightarrow{O}$	
exists	if $\nabla_i \neq \overrightarrow{O}$	
exists	if $\nabla_i \neq \overrightarrow{O}$	
exists	if $\nabla_i \neq \overrightarrow{O}$	
exists	if $\nabla_i \neq \overrightarrow{O}$	
exists	if $\nabla_i \neq \overrightarrow{O}$	
exists	if $\nabla_i \neq \overrightarrow{O}$	
if $\nabla_i \neq \overrightarrow{O}$		
if $\nabla_i \neq \overrightarrow{O}$		
if $\nabla_i \neq \overrightarrow{O}$		
if		

Basis

Thursday, February 4, 2021 $10:17$ PM

Some standard basis:
\n1)
$$
V = \mathbb{R}^{n} : \{ \overline{e}, \overline{e}, \overline{e}, \overline{e}, \overline{e} \}
$$

\n2) $V = P_{n} : \{ 1, 4, 4^{2} ... 4^{n} \}$
\n3) $V = M_{2-s} : \{ \int_{0}^{1} \sigma \sigma \int_{1}^{0} \sigma \sigma \int_{1}^{2} \}$
\nDe₂. Let H be a subspace of a vector space V. Then
\n $\beta = \{ 5, \dots, 5\} \{ 5 \} \times V$ is a basis for H if
\n1) β is L_{\perp}
\n2) Span $\{ 5, \dots, 5\} = H$

How to find Basis For A

Thursday, February 4, 2021 10:53 PM

 \mathbb{R}^2

Spanning Set Theorem

Thursday, February 4, 2021 10:37 PM

Spanning Set Theorem
\nLet
$$
S = \frac{5}{2} \overrightarrow{v_1} \cdots \overrightarrow{v_p} \frac{2}{5} \le V \frac{2}{5} \overrightarrow{h} = S_{pan} \frac{5}{2} \overrightarrow{v_1} \cdots \overrightarrow{v_p} \frac{2}{5}
$$

\n ω) 13 some vector $\overrightarrow{v_k} \in S$ is a linear combination of the other
\nvectors in S, then $\frac{5}{2} \overrightarrow{v_1} \cdots \overrightarrow{v_{k-1}} \cdots \overrightarrow{v_k} \cdots \overrightarrow{v_p} \frac{2}{5} \frac{1}{5} \overrightarrow{h}$ spans H
\n $\frac{1}{2} \overrightarrow{h} \leftarrow H + \frac{5}{2} \overrightarrow{0} \frac{2}{5}$, then some subset of S spains H
\n $\frac{1}{2} \overrightarrow{h} \leftarrow B$, then $A \overrightarrow{x} = \overrightarrow{b} \div B \overrightarrow{x} = \overrightarrow{b}$ have the same solutions
\nIn particular, $x, \overrightarrow{a_1} + \cdots + x_n \overrightarrow{a_n} = \overrightarrow{0}$ if $x, \overrightarrow{b_1} + \cdots + x_n \overrightarrow{b_n} = \overrightarrow{0}$
\n $\frac{1}{2} \overrightarrow{h} \leftarrow B \vee B$, then Row $A = Row B$

Dimensions of a Vector Space

Tuesday, February 9, 2021 2:19 PM

Can a vector space have more than one basis? Yes.

\nIs the number of vectors in a basis unique? Yes.

\nTheorem: If V is a vector space, w/ basis
$$
\beta = 25
$$
, ... $5\pi 3$ when any set in β containing more than n vectors is linearly dependent.

\nThen, any set in β containing more than n vectors is linearly chosen.

\nThen, every basis of V has exactly n vectors.

\nLet β be the number of values in β is linearly independent.

\nIf V is finite set. Otherwise, if S. if there exists a number of vectors in a basis for V.

\nThe dimension of V vectors in a basis for V.

\nThe dimension of V vectors in a basis for V.

\nThe dimension of S. \overline{S} is 0.

\nMethod: α is the number of vectors in a basis for V.

\nThe dimension of S. \overline{S} is 0.

\nMethod: α is linearly in (\mathbb{R}^n) = n.

\nSince α is linearly in (\mathbb{R}^n) and (\mathbb{R}^n) are linearly in (\mathbb{R}^n) .

\nThe dimension of S. \overline{S} is 0.

\nMethod: α is linearly in (\mathbb{R}^n) and (\mathbb{R}^n) are linearly in (\mathbb{R}^n) .

Subspaces of Finite Dimensional Space

Theorem	Let H be a subspace of u finite - of in vector space V.
Then:	1) Every LI subset of H can be enlarged to a basis for H
2) H is also Since dimensional A dim(H) L dim(V)	
$\frac{Fxample}{\dim U}$	Subspaces of \mathbb{R}^2 :
dim I: Span \{I\} where v \neq 0	Line. How
Time	Let V be a p=dim. Vector space when p>1. Then:
1) If s = V has p elements $\frac{1}{2}$ is 1.7 km?	
1) If s = V has p elements $\frac{1}{2}$ is 1.7 km?	
1) If s = V has p elements $\frac{1}{2}$ is 1.7 km?	
2) If s = V has p elements $\frac{1}{3}$ is 1.7 km?	
2) If s = V has p elements $\frac{1}{3}$ is 1.7 km?	
2) If s = V has p elements $\frac{1}{3}$ is 1.7 km?	
2) If s = V has p elements $\frac{1}{3}$ is 1.7 km?	
2) If s = V has p elements $\frac{1}{3}$ is 1.7 km?	

Rank and Nullity

Tuesday, February 9, 2021 2:38 PM

Let A be a matrix. The rank of A is dim (Col A)

\n
$$
\oint the nullity of A is dim (Nul A)
$$
\nTheorem rank A = If of pivot columns/positions of A

\n
$$
nullity A = # of Sree variables in A $\nabla = \overline{O}$ \nTheorem Let A be an max matrix. Then

\n1) rank A = dim (Row A) = rank (A^T)

\n2) (Rank-Nullity Theorem) rank A + nullity A = n
$$

Invertible Matrix Theorem Cont.

Tuesday, February 9, 2021 2:52 PM

If A is an *n*×*n* matrix:
\n13) Columns of A form a basis so IRⁿ
\n14) (o) A = IRⁿ
\n15) rank A = n
\n16) null if A =
$$
\{ \vec{0} \}
$$

\n17) null if A = 0

Coordinate Systems

Tuesday, February 9, 2021 2:55 PM

Theorem (Unique representation theorem) Let β = {5, ... to } be a basis for a vector space V. Then for each $\vec{n} \in V$, there <u>exists</u> unique scalars $c_1 ... c_n$ such that
 $c_1 \cdot \vec{b_1} + ... + c_n \cdot \vec{b_n} = \vec{N}$

Det Let
$$
\beta = \{\overline{b}_1, \ldots, \overline{b}_n\}
$$
 be a basis for a vector space V.

\nLet $\overline{x} \in V$. If $\overline{x} = c_1 \overline{b}_1 \cdot \ldots \cdot c_n \overline{b}_n$, then:

\n|) C₁ ... C_n are the coordinates of \overline{x} relative to basis β

\n2) $[\overline{x} \cdot \overline{d}_\beta] = [\overline{c}_1 \cdot \overline{d}_\beta]$ is the coordinate vector of \overline{x} relative to β

\n3) $\overline{x} \mapsto [\overline{x} \cdot \overline{d}_\beta]$ is the coordinate mapping determined by β

Change of Coordinate Matrix

Tuesday, February 9, 2021 3:10 PM

$$
\frac{Def}{\text{Change of coordinates matrix}} \quad \text{From } R^n, \text{ The}
$$
\n
$$
C_{hange} = \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1
$$

Isomorphism

Theorem Let
$$
\beta = \{\frac{1}{2}\}
$$
 to find the map $\vec{x} \mapsto [\vec{y}]_0$ from V into IRⁿ is
\na one-to-one and one linear transformations
\na one-to-one and one linear transformations
\nis a one-to-one and one linear transformation
\nis a one-to-one and one linear transformation V to W
\nis a one-to-one and one linear transformation V to W
\nWe say that V is isomorphic to W if there exists
\nan isomorphism from V one W
\nTheorem Let V\n#W be since claim vectors spaces. Then V is isomorphic
\nto W if H dim V = dim W.

Example An isomorphism from
$$
P_2
$$
 onto \mathbb{R}^3 :

\nTalce the coordinate mapping $T: P_2 \rightarrow \mathbb{R}^3$ where

\n $\beta = \{1, \epsilon, \epsilon^2\} \notin T(p(\epsilon)) = [p(\epsilon)]_3$ is an isomorphism\n β_3 the theorem above. \mathbb{R}_2 is isomorphic to \mathbb{R}^3

Change of Basis

Wednesday, February 10, 2021 9:08 PM

Given two different bases for a vector space, how are the coordinate busis related to the coordinate $veckor_S$ yectors relative to OAC to the other? $rela$ tive Theorem Let $\beta = \frac{1}{2} \frac{1}{2}$, $\gamma = \frac{1}{2} \frac{1}{3}$, Then there exists a unique n×n matrix P

such that
$$
\int_{\gamma-\beta}^{\gamma} [\vec{x}]_{\beta} = [\vec{x}]_{\gamma}
$$
 for $\gamma \in V$.
 $\int_{\gamma-\beta}^{\gamma} = [5]_{\gamma} [\sqrt{5} \cdot 5]_{\gamma}$ $[\vec{5} \cdot 5]_{\gamma}$

which is culled the change-of-coordinates matrix $\n *from* β *to* $\gamma$$ Theorem $\left(\begin{array}{cc} \rho & -i \\ \rho \in \beta \end{array}\right)^{-1} = \rho$

Finding the Change of Basis Matrix

Wednesday, February 10, 2021 9:24 PM

biven
$$
\beta = \frac{2}{5} \cdot \frac{1}{5} \cdot \frac{1}{5} \cdot \frac{2}{5} \cdot \frac
$$

Example

Wednesday, February 10, 2021 9:13 PM

Determinants

Sunday, February 14, 2021 9:35 PM
Recall: Let $\left(\begin{array}{c} \Box \ \Box \ \ C \ \end{array} \right) = \alpha d - \beta c$

$$
\frac{Def}{e}
$$
 . Let $A = \bigcup a_{ij} 1$ be an matrix. We define
the determinant of A, denoted by det A or |A|

• If
$$
n=1
$$
, then $\det A = \det C \cdot a_{11} = \alpha_{11}$
\n• If $n \ge 1$, then $\det A = \alpha_{11} \cdot \det A_{11} - \alpha_{12} \cdot \det A_{12} + \cdots$
\n
$$
= \sum_{j=1}^{n} (-1)^{i_{j+1}} \alpha_{ij} \cdot \det A_{ij}
$$
\nwhere A_{ij} is the $(n-1) \times (n-1)$
\n*matrix* obtained by removing
\nthe 1st row and jth column of A

Cofactor Expansion

Sunday, February 14, 2021 9:42 PM

Define (i, j) - cofactor of A is
$$
C_{ij} = (-1)^{(i+j)}
$$
. *det A* is

\nTherefore, $l_{i} \in A$ be an n×n matrix where $n \ge 2$. Then

\n1) $det A = \sum_{j=1}^{n} a_{ij} \cdot C_{ij}$ which is the cofacts expansion across the ith row.

\n2) $det A = \sum_{i=1}^{n} a_{ij} \cdot C_{ij}$ which is the cofacts expansion across the ith row.

Determinant from Triangular Matrix

Sunday, February 14, 2021 9:51 PM

Properties of Determinants

Wednesday, February 17, 2021 3:25 PM

Theorem. Let A be an n:n matrix.
a) If B is obtained by adding a multiple of one row of A b> another row of A then del B = de A b) If B is obtained by integrating two rows of A then det B = de A
c) If B is obtained by multiplying one row by scalar k then det B = k: deA
Theorem If U is obtained from A using only row instackology to the following and U is in row echelon form, then U is triangular f deb A = $\begin{cases} C-D' \cdot \det U & \text{if A is invertible} \\ O & \text{if A is not invertible} \end{cases}$ \n
Theorem A is invertible: If det A = 0
Theorem det (AF) = deB A
Theorem deA (AB) = (deA) (det B)

Linearity Properties

Wednesday, February 17, 2021 3:39 PM

Is the det: Main PR a linear transformation? No

However, we get a linear transformation if we Six all but one column of a matrix: Let A be an *n*-n matrix. Define $T: \mathbb{R}^n \mapsto \mathbb{R}$ by $T(\overline{\gamma})$ = det $\left[\begin{array}{c|c} \overline{\alpha} & \overline{\alpha} & \alpha_{j-1} & \alpha_{j-1} & \overline{\alpha'} & \alpha_{j+1} & \cdots & \alpha_n \end{array}\right]$ This is a linear Sunction ble \cdot $\tau(\vec{x}, \vec{y}) = \tau(\vec{x})$ + $\tau(\vec{y})$ (by cofactor expunsion) \cdot $\tau(\epsilon \vec{x}) = \epsilon \tau(\vec{x})$

General Formulas with Determinant

Wednesday, February 17, 2021 3:46 PM

Some general formulas if A is an
$$
n*n
$$
 matrix.
\n• $det(A^m) = (det A)^m$
\n• $det(LA) = k^n \cdot det A$
\n• $det(A^{-1}) = \frac{1}{det A}$

Cramer's Rule and Inverse Formula

Wednesday, February 17, 2021 3:49 PM

Cramer's Rule: Let A be an
$$
n \times n
$$
 invertible matrix. Then for any $\vec{b} \in \mathbb{R}^n$, the unique solution. $\vec{x} = \begin{bmatrix} n \\ n \end{bmatrix}$ of $A\vec{n}' = \vec{b}$ and
\n
$$
\begin{aligned}\n15 \quad \text{given by} \quad N_i &= \frac{\det (A_i \cdot (B))}{\det (A)} \quad \text{for } i = 1, \ldots, n, \\
16 \quad \text{where} \quad A_i \cdot (B') & is the matrix obtained by replacing the identity.\n\end{aligned}
$$
\n
$$
\begin{aligned}\n\text{Lattice Formula:} \quad \text{Let} \quad A \quad \text{be an matrix. Then}\n\end{aligned}
$$

$$
A^{-1} = \frac{1}{det A} \cdot adj A
$$
\nwhere the adjugate/classical adjoint of A
\nis defined by:
\n $(adj A)_{ij} = C_{ji} = (C_{ij})^{T}$
\nso adj A is the *tanpose* of the matrix of cofactors.

Volume/Area of Parallelopiped Shapes

Wednesday, February 17, 2021 4:10 PM

THEOREM Let
$$
\overrightarrow{a_1}
$$
 be the jéh column of A

\n1) If A is a 2+2 matrix, then the area of the parallel system determined by $\overrightarrow{a_1}$ if $\overrightarrow{a_2}$ is 1 due A1

\n2) If A is a 3+3 matrix, then the volume of the parallel-pionalgebraal by $\overrightarrow{a_1}$, $\overrightarrow{a_2}$, $\overrightarrow{a_3}$ is 1 due A1

\nTHEOREM For T: V:~100 f S & V, Leb linear transformation and shell matrix A.

\n1) Let T: $\mathbb{R}^2 \rightarrow \mathbb{R}^2$ be the linear transformation and shell matrix A.

\n1) Let T: $\mathbb{R}^2 \rightarrow \mathbb{R}^2$ be the linear transformation and shell matrix A.

\n2) Let T: $\mathbb{R}^2 \rightarrow \mathbb{R}^2$ be the linear transformation and add matrix A.

\n2) Let T: $\mathbb{R}^2 \rightarrow \mathbb{R}^2$ be the linear transformation and add matrix A.

\n3) Let T: $\mathbb{R}^2 \rightarrow \mathbb{R}^2$ be the linear transformation and add matrix A.

\n3) is a region in \mathbb{R}^2 with finite value of A.

\n4. To 5 is a region in \mathbb{R}^2 with finite value of B.

\n5. Suppose Find the volume of the region bounded by the ellipsoid.

\n6. Suppose the equation bounded by N: $4 \rightarrow \mathbb{R}^2$ and $4 \rightarrow \mathbb{R}^2$.

\n6. Suppose the region bounded by N: $4 \rightarrow \mathbb{R}^2$ and $4 \rightarrow \mathbb{R}^2$.

\n7: $\mathbb{R}^2 \rightarrow \mathbb{R}^2$ and \mathbb{R}^2 and $4 \rightarrow \mathbb{R}^2$.

\n8. Suppose the region of the region bounded by N: $4 \rightarrow \mathbb{R}^2$ and $4 \rightarrow \mathbb{R}^2$.

\n9. Suppose $\begin{bmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0$

so the volume of
$$
E = |det H| \cdot volS = |2 \cdot 3 \cdot 4| \cdot \frac{4}{3}\pi = 32\pi
$$

Eigenvalue, Eigenvector, Eigenspace

Tuesday, February 23, 2021 8:16 PM

Finding Eigenvalues

Tuesday, February 23, 2021 8:29 PM

Characteristic Equation

Tuesday, February 23, 2021 9:17 PM

Similarity

Tuesday, February 23, 2021 9:26 PM

Det	Ann is similar to Banan	Shan	It there exists an invertible	
Male	It	A is similar to B, then		
$P^HAP = B$	then	$AP = PB$	then	$A = PBP^{-1}$
A#B are similar	similar to B, then	$AP = PB$	then	$A = PBP^{-1}$
A#B are similar	similar to B, then	$AP = PB$	then A = PBP^{-1}	
Theorem	If A and B are similar matrices, then A#B have the same theorem is in terms of the same equation			
Theorem	It is a clear value for the same expression	the same equation	the same equation	the sum of the series.
Diagonalization

Thursday, February 25, 2021 1:39 PM

Diagonalization Theorem Let A be an *nam* matrix. Then A is
\ndiagonalized to the *A* has a *LI* eigenvalues
\nIn *func*
$$
A = PDP^{-1}
$$
 where D is diagonal
\nif *columns of* P over a *LI eigen vectors*
\nof P are eigenvalues of A converges
\n*asymmetry*
\n*of* P are eigenvalues of A corresponding
\n*respectively the* eigenvalues in P
\n*the corresponding*
\n*h conresponding*
\n*the in* P
\n*where* $P = \lceil \vec{v}_1 \rceil$ and $\vec{v}_0 \rceil$ where $\vec{v}_1 \rceil$ and \vec{v}_0 are the *LI* eigenvectors

$$
D = \begin{bmatrix} \lambda_1 & \lambda_2 & \lambda_3 \\ \lambda_3 & \lambda_4 & \lambda_5 \end{bmatrix}
$$
 are the *the* the eigenvalues

Properties of Diagonalizable

Thursday, February 25, 2021 2:07 PM

Use of Diagonalization

Thursday, February 25, 2021 2:22 PM

Dot Product

Friday, February 26, 2021 4:22 PM

Def	Let $\vec{\alpha}, \vec{\nu} \in \mathbb{R}^n$. The $\vec{\alpha} \cdot \vec{\nu} = U_1 \cdot V_1 + U_2 \cdot V_2 + \cdots + U_n \cdot V_n$ which is scalar\n
The	Let p is due to a example of an inner product.
Let l equals (norm of $\vec{\alpha}$ is:	
11 $\vec{\alpha}$ = $\sqrt{\vec{\alpha} \cdot \vec{\alpha}} = \sqrt{\vec{\alpha}^2 + \vec{\alpha}^2 + \cdots + \vec{\alpha}^2}$	
Therefore	Let $\vec{\alpha}, \vec{\nu}, \vec{\omega} \in \mathbb{R}^n$ is a sequence of an inner product.
a) $\vec{\alpha} \cdot \vec{\nu} = \vec{\nu} \cdot \vec{\alpha}$	
b) $(\vec{\alpha} + \vec{\nu}) \cdot \vec{\mu} = \vec{\mu} \cdot \vec{\mu} \cdot \vec{\mu} \cdot \vec{\mu} \cdot \vec{\mu} \cdot \vec{\mu}$	

c)
$$
(c\vec{w}) \cdot \vec{v} = c(\vec{w} \cdot \vec{v}) = \vec{w} \cdot (c\vec{v})
$$

d) $\vec{u} \cdot \vec{u} \ge 0$ $\notin \vec{w} \cdot \vec{w} = 0$ iff $\vec{w} = \vec{0}$
e) $||\vec{w}||^2 = \vec{w} \cdot \vec{w}$
f) $||c\vec{w}|| = |c| \cdot ||\vec{w}||$

Unit Vector

Friday, February 26, 2021 5:12 PM

Def A unit vector is a vector of length 1.

\nWe can find a unit vector, going in the same direction as
$$
\vec{v} \in \mathbb{R}^n
$$
 and $\vec{v} \neq 0$

\nunit $\vec{v} = \frac{\vec{v}}{\|\vec{v}\|}$

\nand this process is called normalizing vector \vec{v} .

Distance

Friday, February 26, 2021 5:14 PM

$$
\frac{\partial e}{\partial x} \quad For \quad \vec{u}, \vec{v} \in \mathbb{R}^{n}, the distance between \quad \vec{u} \notin \vec{u} \text{ is}
$$
\n
$$
dist(\vec{u}, \vec{v}) = ||\vec{u} - \vec{v}||
$$

Friday, February 26, 2021 5:19 PM

Det \vec{u} , \vec{v} = \vec{R}^n are orthogonal if $\vec{u} \cdot \vec{v} = 0$

 P_y thagorean Theorem: $\overline{\omega}$ & $\overline{\nu}$ are orthogonal it $||\overline{\omega}||^2 + ||\overline{\nu}||^2 = ||\overline{\omega} + \overline{\nu}||^2$

Friday, February 26, 2021 5:29 PM

Let W be a subspace of
$$
R^* + 1e^z \ncong eR^n
$$
. Then a is
\norblogana to W if \overline{z} is orthogonal to every vector in W.

\nThe orthogonal complement of W is

\n
$$
W^{\perp} \circ \{ \overline{z} \circ R^n | \overline{z} \cdot W \circ O, \overline{w} \circ W \}
$$
\n
$$
W^{\perp} \circ \{ \overline{z} \circ R^n | \overline{z} \cdot W \circ O, \overline{w} \circ W \}
$$
\nProperties: Let W be a subspace of R^n . Then

\na) $\overline{x} \in W^{\perp}$ iff \overline{x} is orthogonal to every vector in a set that spans W.

\nb) W^{\perp} is a subspace of R^n

\nc) $(W^{\perp})^{\perp} = W$

\nd) $W \wedge W^{\perp} \circ \{ \overline{z} \circ \overline{z} \}$

\nTheorem For any matrix A,

\n1) $(R_0 \times A)^{\perp} = |V_1(A - z) \cup G(A)|^{\perp} = |V_4(A - z) \cup G(A)|^{\perp}$

Inner Product, Inner Product Space

Monday, March 1, 2021 3:48 PM

De6	Le6 V be a vector space. An inner product on V is a
Sumcion	the4 assigns to each pair of vectors $\vec{u}, \vec{v} \in V$
to a scalar denoted $\langle \vec{u}, \vec{v} \rangle$	
It must satisfy the following axioms:	
For all $\vec{u}, \vec{v}, \vec{w} \in V$ and any scalar c:	
1) $\langle \vec{u}, \vec{v} \rangle = \langle \vec{v}, \vec{u} \rangle$	
2) $\langle \vec{u} \cdot \vec{v}, \vec{w} \rangle = \langle \vec{u}, \vec{w} \rangle$	
3) $\langle c\vec{u}, \vec{v} \rangle = c \langle \vec{u}, \vec{w} \rangle$	
4) $\langle \vec{u}, \vec{u} \rangle \ge 0 \langle \langle \vec{u}, \vec{u} \rangle \rangle = 0$	
1) $\langle \vec{u}, \vec{u} \rangle = c \langle \vec{u}, \vec{v} \rangle$	
2) $\langle \vec{u} \cdot \vec{v} \rangle = c \langle \vec{u}, \vec{v} \rangle$	
3) $\langle c\vec{u}, \vec{v} \rangle = c \langle \vec{u}, \vec{v} \rangle$	
4) $\langle \vec{u}, \vec{u} \rangle \ge 0 \langle \langle \vec{u}, \vec{u} \rangle = 0$	
1) $\langle \vec{u}, \vec{u} \rangle = 0 \langle \langle \vec{u}, \vec{u} \rangle = 0$	
2) $\langle \vec{u}, \vec{u} \rangle = 0$	
3) $\langle c\vec{u}, \vec{v} \rangle = c \langle \vec{u}, \vec{u} \rangle = 0$	
4) $\langle \vec{u}, \$	

Examples of Inner Product Spaces

Monday, March 1, 2021 3:55 PM

The following are examples of inner product spaces:
\n•
$$
IR^n
$$
 w | det product
\n• $Fi \sim$ $l_0 \sim L_n$ l_0 real numbers. Take PR_n *w* | l_1 > defined
\n $bp_1 \sim p_1 q_2 = p(b_0) + q(b_0) \ldots p(b_n) q(b_n)$
\n• $CI_{\alpha, b}J = \frac{1}{2}cohinsus functions on La, bJ} w_1 < 2$ defined by
\n $l_1 q_2 = \int_a^b f(t) \cdot g(t) dt$

Properties of Inner Product

Monday, March 1, 2021 4:01 PM

Def.	Let V be an inner product space W inner product	point
\langle , \rangle . For \vec{w} , \vec{v} $\in V$:		
1) The length <u>norm</u> of \vec{w} is $ \vec{w} = \sqrt{\langle \vec{w}, \vec{w} \rangle}$		
2) \vec{w} is a <u>unrt vector</u> if $ \vec{w} = 1$		
3) The distance between $\vec{w} \notin \vec{v}$ is $ \vec{w} - \vec{v} $		
4) $\vec{w} \notin \vec{v}$ are <u>orthogonal</u> if $\langle \vec{w}, \vec{v} \rangle = 0$		
5) $ \vec{w} ^2 = \langle \vec{w}, \vec{w} \rangle \notin \vec{w} = c \cdot \vec{w} $		

Cauchy-Schwarz Inequality

Monday, March 1, 2021 4:57 PM

Then
$$
l_{\text{Cauchy}} - S_{\text{chwarz}}
$$
 $\text{Inequal}.$

\nThen $|S(\vec{u}), \vec{v}| \leq ||\vec{u}|| \cdot ||\vec{v}||$

\nTherefore $(T_{\text{triangle}}$ $\text{Inequal}.$

\nThen $|S(\vec{u}), \vec{v}| \leq ||\vec{u}|| \cdot ||\vec{v}||$

\nThen $||\vec{u} \cdot \vec{v}|| \leq ||\vec{u}|| \cdot ||\vec{v}||$

Orthogonal Sets

Wednesday, March 3, 2021 6:04 PM

Det	A subset	2 U, ..., U _p	3 s + IN ⁿ is orthogonal if
U, ..., U _i = 0	whenever	i * j	
Therm	1 f	5 = $\{ u_1^2, ..., u_p^2 \}$ is an orthogonal set of nonzero Vectors in IN ⁿ then S is LL \neq a basis for span $\{ S \}$	
Det	U be a basis of IN ⁿ . An orthogonal basis for W is a basis for W which is orthogonal		
Thewen	Let $\{ \overline{u_1}, ... \overline{u_p} \}$ be an orthogonal basis for a subspace W s f R ⁿ . Then, for each $\overline{g} \in W$, if $\overline{g} = \overline{c_1} \overline{u_1} + ... + c_p \overline{u_p}$		
then	$c_j = \frac{V \cdot \overline{u_j}}{\overline{u_j} \cdot \overline{u_j}} = \frac{\overline{g} \cdot \overline{u_j}}{\overline{g} \cdot \overline{u_j}}$	for $j = 1, ..., \rho_p \overline{u_p}$	

Orthonormal

 \mathcal{L}

Wednesday, March 3, 2021 6:24 PM

Def. A subset
$$
\Sigma \overline{a}
$$
, ... $\overline{a_p} \overline{S}$ of \mathbb{R}^n is arthonormal if it is
\northogonal $\overline{\epsilon}$ every vector is a unit vector

\nLet W be a subspace of \mathbb{R}^n . An orthonormal basis

\nFor W is an basis \overline{S} or W which is a then normal.

Orthogonal Matrix

Wednesday, March 3, 2021 6:27 PM

Def	An orthogonal matrix	is a square matrix	such that
$U^{-1} = U^{T}$, which means that $U^{T}U = I_{n}$			
Theorem	An man matrix U has orthonormal columns		
$iff = U^{T}U = I_{n}$			
Theorem	Let U be an max matrix with orthonormal columns		
$\frac{1}{2} eV = \frac{1}{2} \sqrt{3} \sqrt{5} \sqrt{5} \sqrt{7} \sqrt{7} \sqrt{7}$			
1) $ U_{\infty}^{2} = \hat{\chi} $			
2) $(U_{\infty}^{2}) \cdot (U_{\infty}^{2}) = \sqrt{3} \cdot \sqrt{7}$			
3) $(U_{\infty}^{2}) \cdot (U_{\infty}^{2}) = 0 \sqrt{5} \sqrt{7} \sqrt{7} \sqrt{7} \sqrt{7}$			

Orthogonal Projection (Vector to Vector)

Wednesday, March 3, 2021 6:34 PM

Det	Let	3, $\vec{u} \in \mathbb{R}^n$ where $\vec{u} \neq 0$. Let L be the line through	7, $\vec{u} \in \mathbb{R}^n$ when	Let L be the line orthogonal projection of	7, one of	1,																																																															
-----	-----	---	------------------------------------	---	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------	----

Orthogonal Decomposition (Vector to Subspace)

Tuesday, March 9, 2021 10:38 PM

Theorem (Orthogonal Decomposition): Let W be a subspace of R ⁿ . Then
each $\overrightarrow{y} \in \mathbb{R}^n$ can be written uniquely in the form
$\overrightarrow{y} = \hat{y} + z$ where $\hat{y} \in W$ and $z = W^{\perp}$.
Formula: if $\xi \overrightarrow{u}$... $\overrightarrow{u_{\beta}} \overrightarrow{3}$ is an orthogonal basis from W. then:
orthogonal projection of \overrightarrow{y} onto W:
$\rho r \hat{y} \cup \overrightarrow{y} = \hat{y} = \frac{\overrightarrow{y} \cdot \overrightarrow{u_{\beta}} \cdot \overrightarrow{u_{\beta}} \cdot \overrightarrow{u_{\beta}} \cdot \overrightarrow{u_{\beta}} \cdot \overrightarrow{u_{\beta}} \cdot \overrightarrow{u_{\beta}} \cdot \overrightarrow{u_{\beta}}$
$\dot{\xi}$ cannot be of \overrightarrow{y} orthogonal to W:
$\overrightarrow{\xi}$ components of \overrightarrow{y} orthogonal to W:
$\overrightarrow{\xi} = \overrightarrow{y} - p r \hat{y} \cup \overrightarrow{y} = \overrightarrow{y} - \hat{y}$

Best Approximation Theorem

Theorem Leb W be a subspace of
$$
\mathbb{R}^n
$$
 file of \mathbb{S}^n . Then $proj_w \mathbb{S}$
\nis the closest point in W to g in W to g .
\n
$$
\|\nabla -proj_w\vec{y}\| \leq \|\nabla -proj_w\vec{y}\| \
$$

Projection onto Orthonormal Set

Tuesday, March 9, 2021 10:52 PM

Theorem	If	$\xi \overline{a_1^2 \dots a_p^2 \xi_1^3}$ is an orthonormal basis for a subspace
W of	\mathbb{R}^n , then ξ or all	$\overline{g^3} \in \mathbb{R}^n$:
(a) $P^{\prime \prime} \circ j \circ \overline{g^{\prime}} = (\overline{g^{\prime}} \cdot \overline{a_1}) \overline{a_1} + (\overline{g} \cdot \overline{a_2}) \overline{a_2} + \dots + (\overline{g} \cdot \overline{a_p}) \overline{a_p}$		
$2 \circ \overline{a_1^2} \vee \overline{a_2} \vee \overline{a_1} \vee \overline{a_2} \vee \overline{a_1} \vee \overline{a_2} \vee \overline{a_2} \vee \overline{a_1} \vee \overline{a_2} \vee \overline{a_p}$		
$2 \circ \overline{a_1^2} \vee \overline{a_2} \vee \overline{a_1} \vee \overline{a_2} \vee \overline{a_p} \vee \overline{a_p} \vee \overline{a_p}$		
$2 \circ \overline{a_1} \vee \overline{a_2} \vee \overline{a_p} \vee \over$		

Gram-Schmidt Process

Wednesday, March 10, 2021 4:56 PM

How to construct an orthogonal/orthonormal basis:
\nGram-Schmidt Process: Let
$$
\overline{zx}
$$
, ..., $\overline{y}g$ be a basis for a nonzero
subspace W of \mathbb{R}^n

$$
\overrightarrow{V_1} = \overrightarrow{V_2}
$$
\n
$$
\overrightarrow{V_2} = \overrightarrow{N_2} - \frac{\overrightarrow{Y_2} \cdot \overrightarrow{V_1}}{\overrightarrow{V_1} \cdot \overrightarrow{V_1}} \cdot \overrightarrow{V_1}
$$
\n
$$
\overrightarrow{V_3} = \overrightarrow{Y_3} - \frac{\overrightarrow{X_3} \cdot \overrightarrow{V_1}}{\overrightarrow{V_1} \cdot \overrightarrow{V_1}} \cdot \overrightarrow{V_1} - \frac{\overrightarrow{X_3} \cdot \overrightarrow{V_2}}{\overrightarrow{V_2} \cdot \overrightarrow{V_2}} \cdot \overrightarrow{V_2}
$$
\n
$$
\overrightarrow{V_p} = \overrightarrow{N_p} - \sum_{i=1}^{p} \overrightarrow{X_p} \cdot \overrightarrow{V_i} \cdot \overrightarrow{V_i}
$$

Then $\{\overline{v}_i^3, \dots, \overline{v}_p^3\}$ is an orthogonal busin Sor $W^{\frac{1}{5}}$ $\{norm\ \overline{V_1}, \ldots,norm\ \overline{V_p}\ \}$ is an orthonormal basis for W. Also span $\{\vec{x}_1, \dots, \vec{x}_k\}$ = span $\{\vec{v}_1, \dots, \vec{v}_k\}$ for $1 \in k \in p$

QR Decomposition

Wednesday, March 10, 2021 5:35 PM

Theorem	Let A be an mxn matrix with A can be factored A can be factored A can mxn matrix M orthonormal columns
R is an mxn under triangular invertible matrix w possible diagonal entries	
Let Q be the mx where columns are obtained by applying the orthonormal values of A	
Let $R = Q^T A$	

Diagonalization of Symmetric Matrices

Thursday, March 18, 2021 4:29 PM

Des. let A be a matrix, A is symmetric if A⁷ = A.

\nso
$$
aij = a_{ji}
$$
 for all iij

\nso A is symmetric about its main diagonal

\nFor all iij

\nSo A is symmetric about its main diagonal

\nSo $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$ is symmetric

\nSo $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$ is symmetric

\nSo $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 4 & 5 & 6 \end{bmatrix}$ is symmetric

\nSo $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 4 & 5 & 6 \end{bmatrix}$ is symmetric.

\nTherefore, Let A be an matrix matrix. Then A is symmetric

\nIf A is symmetric

\nIf A is symmetric

\nIf A is orthogonal set of A eigenvalues.

Spectral Theorem for Symmetric Matrices

Thursday, March 18, 2021 4:42 PM

Thm . Let A be an
$$
n \times n
$$
 symmetric matrix. Then
\n ω) A has n real eigenvalues
\n ω beomcture multipliccties = algebraice multiplicities
\n ω (Licities)
\n ω (Licus)
\n ω (Licities)
\n ω (Licus)
\n ω (

Singular Value Decomposition

Thursday, March 18, 2021 4:47 PM

We can decompose an m*n matrix A: $A_{m \times n}$ = $U_{m \times m}$ $\sum_{m \times n} V_{n \times n}^{\top}$ where U, V are orthogonal