Linear Equations

Monday, January 4, 2021 9:20 AM

$$\begin{bmatrix} a_{11} & \gamma_{1} + a_{12} & \gamma_{2} + \dots + a_{1n} & \gamma_{n} = b, \\ a_{21} & \gamma_{1} + a_{22} & \gamma_{2} + \dots + a_{2n} & \gamma_{n} = b_{2n} \\ \vdots & & & \\ a_{m1} & \gamma_{1} + a_{m2} & \gamma_{2} + \dots + a_{mn} & \gamma_{n} = b_{m} \end{bmatrix}$$

$$A = \frac{1}{2m} \begin{bmatrix} a_{m2} & \gamma_{2} + \dots + a_{mn} & \gamma_{n} \\ a_{m1} & \gamma_{1} + a_{m2} & \gamma_{2} + \dots + a_{mn} & \gamma_{n} \\ a_{m1} & \gamma_{1} + a_{m2} & \gamma_{2} + \dots + a_{mn} & \gamma_{n} \\ a_{m1} & \gamma_{1} + a_{m2} & \gamma_{2} + \dots + a_{mn} & \gamma_{n} \\ a_{m1} & \gamma_{1} + a_{m2} & \gamma_{2} + \dots + a_{mn} & \gamma_{n} \\ a_{m1} & \gamma_{1} + a_{m2} & \gamma_{2} + \dots + a_{mn} & \gamma_{n} \\ a_{m1} & \gamma_{1} + a_{m2} & \gamma_{2} + \dots + a_{mn} & \gamma_{n} \\ a_{m1} & \gamma_{1} + a_{m2} & \gamma_{2} + \dots + a_{mn} & \gamma_{n} \\ a_{m1} & \gamma_{1} + a_{m2} & \gamma_{2} + \dots + a_{mn} & \gamma_{n} \\ a_{m1} & \gamma_{1} + a_{m2} & \gamma_{2} + \dots + a_{mn} & \gamma_{n} \\ a_{m1} & \gamma_{1} + a_{m2} & \gamma_{2} + \dots + a_{mn} & \gamma_{n} \\ a_{m1} & \gamma_{1} + a_{m2} & \gamma_{2} + \dots + a_{mn} & \gamma_{n} \\ a_{m1} & \gamma_{1} + a_{m2} & \gamma_{2} + \dots + a_{mn} & \gamma_{n} \\ a_{m1} & \gamma_{1} + a_{m2} & \gamma_{2} + \dots + a_{mn} & \gamma_{n} \\ a_{m1} & \gamma_{1} + a_{m2} & \gamma_{2} + \dots + a_{mn} & \gamma_{n} \\ a_{m1} & \gamma_{1} + a_{m2} & \gamma_{2} + \dots + a_{mn} & \gamma_{n} \\ a_{m1} & \gamma_{1} + a_{m2} & \gamma_{2} + \dots + a_{mn} & \gamma_{n} \\ a_{m1} & \gamma_{1} + a_{m2} & \gamma_{2} + \dots + a_{mn} & \gamma_{n} \\ a_{m1} & \gamma_{1} + a_{m2} & \gamma_{2} + \dots + a_{mn} & \gamma_{n} \\ a_{m1} & \gamma_{1} + a_{m2} & \gamma_{2} + \dots + a_{mn} & \gamma_{n} \\ a_{m1} & \gamma_{1} + a_{m2} & \gamma_{2} + \dots + a_{mn} & \gamma_{n} \\ a_{m1} & \gamma_{1} + a_{m2} & \gamma_{1} + \dots + a_{mn} & \gamma_{n} \\ a_{m1} & \gamma_{1} + a_{m2} & \gamma_{1} + \dots + a_{mn} & \gamma_{n} \\ a_{m1} & \gamma_{1} + a_{m2} & \gamma_{1} + \dots + a_{mn} & \gamma_{n} \\ a_{m1} & \gamma_{1} + a_{m2} & \gamma_{1} + \dots + a_{mn} & \gamma_{n} \\ a_{m1} & \gamma_{1} + a_{m2} & \gamma_{1} + \dots + a_{mn} & \gamma_{1} + a_{m2} & \gamma_{1} + \dots + a_{mn} \\ a_{m1} & \gamma_{1} + a_{m2} & \gamma_{1} + \dots + a_{mn} & \gamma_{1} + \dots + a_{mn} & \gamma_{1} + \dots + a_{mn} \\ a_{m1} & \gamma_{1} + a_{m2} & \gamma_{1} + \dots + a_{mn} & \gamma_{1} + \dots + a_{mn} & \gamma_{1} + \dots + a_{mn} \\ a_{m1} & \gamma_{1} + \dots + a_{mn} & \gamma_{1} + \dots + a_{mn} & \gamma_{1} + \dots + a_{mn} \\ a_{m1} & \gamma_{1} + \dots + a_{mn} & \gamma_{1} + \dots + a_{mn} & \gamma_{1} + \dots + a_{mn} \\ a_{m1} & \gamma_{1} + \dots + a_{mn} & \gamma_{1} + \dots + a_{mn} \\ a_{m1} & \gamma_{$$

System Consistency

Monday, January 4, 2021 9:34 AM

Def. A linear system is consistent if it has at least one solution. Otherwise it is inconsistent.

Matrix

Monday, January 4, 2021 9:36 AM

Solving Linear Systems

Monday, January 4, 2021 9:43 AM

1. Adding a multiple of one equation to another 2. Interchange two equations. 3. Multiply an equation by a non O constant Elementary Row Operations

Monday, January 4, 2021 9:45 AM

I. Ard	a multiple of one row to another	
2. Swap	tuo rons	
3. Multiply	entries in a row by a non O constant	
Pes. tuo	matrices are now equivalent is we can obtain	
ONC	mutrix from the other using elementary row operation	W S

Row Echelon Forms

Wednesday, January 6, 2021 9:46 PM

Des A matrix is in echelon /row echelon form if:
1. All non zero rows are above any zero row(s)
2. Each leading entry of a non zero row is in a
the sint nonzero enty 1-r
column to the right of the leading entry above it.
3. All entries in a column below a leading
entry are zeros
Examples:
$$\begin{bmatrix} 0 & 2 & 3 \\ 0 & 0 & 4 \end{bmatrix} = \begin{bmatrix} 0 & 2 & 3 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 2 & 0 \\ 0 & 3 & 0 \end{bmatrix}$$

Des. A matrix is in reduced echelon/reduced row
echelon form if it is in row echelon form
4. The leading entry of each non zero row is 1
5. Each leading 1 is the only only nonzero entry
in its column.
Examples: $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
Examples: $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 &$

Gaussian Elimination

Wednesday, January 6, 2021 10:02 PM

buassian elimination / vou reduction is the process of
transforming a matrix into row echelon form using
elementary row operations
Det let A be a matrix and B be its rref.
For any leading 1 in B, the corresponding
location in A is a pirot position and the
column where it is located is a pivot column
A pivot is a nonzero entry in a pivot
position that is used to create zeros
Steps: A = $ \begin{cases} 0 & 0 & 0 & 0 \\ 2 & 0 & 4 & -4 & 2 \\ 2 & -3 & 5 & 1 & 0 \\ 1 & 0 & 1 & 2 & 3 \end{cases} $
$ \begin{bmatrix} 0 & 0 & 0 & 0 \\ 2 & 0 & 4 & -4 & 2 \\ 2 & -3 & 5 & 1 & 0 \\ 1 & 0 & 1 & 2 & 3 \end{bmatrix} $ $ \begin{array}{c} \underline{Step 1} \\ \underline{Step 1} \\ Find the leftmost non zero \\ Column. (This is a pivot column.) \\ \end{array} $
$\begin{bmatrix} 1 & 0 & 1 & 2 & 3 \\ 2 & 0 & 4 & -4 & 2 \\ 2 & -3 & 5 & 1 & 0 \\ - & 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{Step 2} Choose a nonzero entry in this column to be a Rich Ry pivot. Interchange rows such that the pivot is at the top$
$ \begin{bmatrix} 1 & 0 & 1 & 2 & 3 \\ 0 & 0 & 2 & -8 & -4 \\ 0 & -3 & 3 & -3 & -6 \end{bmatrix} - \frac{5tep 3}{-2R_1 + R_2 - 3R_2} U_{se} the protection to creat 2 eros below it. $

$$\begin{bmatrix} 0 & 0 & 2 & -0 & -1 \\ 0 & -3 & 3 & -3 & -6 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} -2R_1 + R_2 & \rightarrow R_2 \\ -2R_1 + R_3 & \rightarrow R_3 \end{bmatrix}$$
 zeros below it.

$$\begin{bmatrix} 1 & 0 & 1 & 23 \\ 0 & -3 & 3 & -3 & -6 \\ 0 & 0 & 2 & -8 & -4 \\ -0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 2 & 3 \\ 0 & -3 & 3 & -3 & -6 \\ 0 & 0 & 1 & -4 & -2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \stackrel{!}{=} R_{3} \rightarrow R_{3}$$

 $R_2 \leftarrow R_3$ (fulfils step 3)

$$\begin{bmatrix} 1 & 0 & 0 & 65 \\ 0 & -3 & 0 & 9 & 0 \\ 0 & 0 & 1 & -4 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{-3R_3 + R_2 \rightarrow R_2} -R_3 + R_1 \rightarrow R_1$$

$$\begin{bmatrix} 1 & 0 & 0 & 65 \\ 0 & 1 & 0 & -30 \\ 0 & 0 & 1 & -4 & -2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{i}_3 R_2 \rightarrow R_2$$
The matrix is now in reduced row echelon form.

Solutions, Existence, Uniqueness Wednesday, January 6, 2021 10:28 PM

-

2) Infinitely many solutions, there is a free variable.

Vectors

Saturday, January 9, 2021 4:13 PM

Def. \mathbb{R}^{n} is the set of all ordered n-types of real numbers. $\mathbb{R}^{n} = \{ (u_{i}, u_{2}, ..., u_{n}) \mid u_{i} \in \mathbb{R} \text{ for } 1 \leq i \leq n \}$ $\overline{W}^{n}, \overline{V}^{n}$ in \mathbb{R}^{n} are equal if $u_{i} = V_{i}$ for $1 \leq i \leq n$ We will call elements in \mathbb{R}^{n} as <u>vectors</u> <u>Notation</u>: $\begin{bmatrix} u_{i} \\ u_{2} \\ u_{n} \end{bmatrix}$ Column $\begin{bmatrix} u_{i}, u_{2}, ..., u_{n} \end{bmatrix}$ Row Vector $(l \times n)$ $\begin{bmatrix} u_{i} \\ u_{n} \end{bmatrix}$ Column $\begin{bmatrix} u_{i}, u_{2}, ..., u_{n} \end{bmatrix}$ Row Vector $(l \times n)$ $\begin{bmatrix} u_{i} \\ u_{n} \end{bmatrix}$ (n $\times l$)

Vector Operations

Saturday, January 9, 2021 4:21 PM

$$\frac{Addition}{\vec{u} + \vec{v}} = \begin{bmatrix} u_1 \\ u_2 \\ u_n \end{bmatrix} + \begin{bmatrix} v_1 \\ v_2 \\ v_n \end{bmatrix} = \begin{bmatrix} u_1 - v_1 \\ v_2 \\ v_n \end{bmatrix} + \begin{bmatrix} u_1 - v_1 \\ v_2 \\ v_n \end{bmatrix} + \begin{bmatrix} u_1 - v_1 \\ v_2 \\ v_n \end{bmatrix} + \begin{bmatrix} u_1 - v_1 \\ v_2 \\ v_n \end{bmatrix} + \begin{bmatrix} u_1 - v_1 \\ v_2 \\ v_n \end{bmatrix} + \begin{bmatrix} u_1 - v_1 \\ v_2 \\ v_n \end{bmatrix} + \begin{bmatrix} u_1 - v_1 \\ v_2 \\ v_n \end{bmatrix} + \begin{bmatrix} u_1 - v_1 \\ v_2 \\ v_n \end{bmatrix} + \begin{bmatrix} u_1 - v_1 \\ v_2 \\ v_n \end{bmatrix} + \begin{bmatrix} u_1 - v_1 \\ v_2 \\ v_n \end{bmatrix} + \begin{bmatrix} u_1 - v_1 \\ v_2 \\ v_n \end{bmatrix} + \begin{bmatrix} u_1 - v_1 \\ v_2 \\ v_n \end{bmatrix} + \begin{bmatrix} u_1 - v_1 \\ v_2 \\ v_n \end{bmatrix} + \begin{bmatrix} u_1 - v_1 \\ v_2 \\ v_n \end{bmatrix} + \begin{bmatrix} u_1 - v_1 \\ v_2 \\ v_n \end{bmatrix} + \begin{bmatrix} u_1 - v_1 \\ v_2 \\ v_n \end{bmatrix} + \begin{bmatrix} u_1 - v_1 \\ v_2 \\ v_n \end{bmatrix} + \begin{bmatrix} u_1 - v_1 \\ v_2 \\ v_n \end{bmatrix} + \begin{bmatrix} u_1 - v_1 \\ v_2 \\ v_n \end{bmatrix} + \begin{bmatrix} u_1 - v_1 \\ v_n \end{bmatrix} + \begin{bmatrix} u_1 - v_n \end{bmatrix} + \begin{bmatrix} u_1 - v_n \\ v_n \end{bmatrix} + \begin{bmatrix} u_1 - v_n \end{bmatrix} + \begin{bmatrix} u_1 - v_n \\ v_n \end{bmatrix} + \begin{bmatrix}$$

$$\frac{\text{Scalar Multiplication}}{\text{Cu}^{2}} = C \cdot \begin{bmatrix} u_{1} \\ u_{2} \\ u_{n} \end{bmatrix} = \begin{bmatrix} c \cdot u_{2} \\ c \cdot u_{2} \\ c \cdot u_{n} \end{bmatrix} \stackrel{\text{Scalar Multiplication}}{\underset{C \cdot u_{n}}{\text{Scalar Multiplication}}}$$

Property of Vectors

Saturday, January 9, 2021 4:25 PM

Let
$$\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^{n}$$
 and c, d be scalars
1) (Addition is commutative) $\vec{w} + \vec{v} = \vec{v} + \vec{u}$
2) (Addition is associative) $(\vec{w} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$
3) (Additive identity exists) $\vec{u} + \vec{0} = \vec{u}$
4) (Additive inverse origh) $\vec{u} + (-\vec{u}) = \vec{0}$
5) $((\vec{v} + \vec{v}) = c\vec{u} + c\vec{v}$
6) $(c+d)\vec{u} = c\vec{u} + d\vec{u}$
7) $c(d\vec{u}) = (cd)\vec{v}$
8) $|\vec{u} = \vec{u}$

Linear Combination

Saturday, January 9, 2021 4:34 PM

Def.
$$\vec{y} \in \mathbb{R}^n$$
 is a linear combination of $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p \in \mathbb{R}^n$
if there exists scalars c_1, c_2, \dots, c_p such that:
 $\vec{y} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_p \vec{v}_p$

Span

Saturday, January 9, 2021 4:47 PM

Def. The spon of
$$\overline{v_{p}} = R^{n}$$
 is the set of all
linear combinations of $\overline{v_{p}} = \frac{1}{2}c_{p}\overline{v_{p}}$.
Span $\frac{1}{2}\overline{v_{p}} = \frac{1}{2}c_{p}\overline{v_{p}} + \frac{1}{2}c_{p}\overline{v_{p}} + \frac{1}{2}c_{p}\overline{v_{p}} + \frac{1}{2}c_{p}\overline{v_{p}}$.
The set is spanned/generated by $\overline{v_{p}} = \frac{1}{2}c_{p}\overline{v_{p}}$.

Ax = b Wednesday, January 13, 2021 12:25 PM

Def. Let A be an maxin materix and
$$\overline{a_1} \dots \overline{a_n}$$
 be
its columns. Lev $\overline{x} \in \mathbb{R}^n$. Then the product of A and \overline{x} is:
 $A\overline{x} := \begin{bmatrix} \overline{a_1} & \overline{a_2} & \dots & \overline{a_n} \end{bmatrix} \cdot \begin{bmatrix} \overline{x_1} \\ \overline{x_2} \\ \overline{x_n} \end{bmatrix} = \overline{x_1} \overline{a_1} + \overline{x_2} \overline{a_2} \dots + \overline{x_n} \overline{a_n}$
which is a lnear combination of columns of A with anyths $\overline{x_1} \dots \overline{x_n}$
 $\frac{Properbies}{1} = A\overline{x}^2$
 $1 = A(\overline{a_1} + \overline{x}) = A\overline{a_1} + A\overline{x}^2$
 $2 = A(\overline{a_n}) = C(A\overline{a_n})$

Definition some vector equation
$$\gamma_{1}, \alpha_{1}, \cdots, \gamma_{n}, \alpha_{n} = b$$

it can be rewritten as:
 $\begin{bmatrix} \alpha_{1}, \dots, \alpha_{n} \end{bmatrix} \cdot \begin{bmatrix} \gamma_{1} \\ \gamma_{2} \end{bmatrix} = \overline{b}$
and has the same solution set as:
Unear system
· Vector equation
Theorem The matrix equation $Ax^{2} = \overline{b}^{2}$ has a
solution if is a linear combination of the columns
of A (ie. \overline{b} is in the spen of the columns of A)
Theorem Let A be an man matrix then the following
statements are equivalent (all statement are all two or hole)
1) For any $\overline{b} \in \mathbb{R}^{m}$, $Ax^{2} = \overline{b}^{2}$ has a solution
2) Firm \overline{b} on \overline{b} is a solution \overline{b} a solution

Identity Matrix

Wednesday, January 13, 2021 12:44 PM

Def. An identity matrix In is an non matrix with I's on the diagonal starting from the upper left corner und O's everywhere else.

$$\mathcal{I}_n \tilde{\chi} = \chi$$

In acts like 1 in multiplication

Solutions of Homogenous Systems Wednesday, January 13, 2021 12:47 PM

Det A linear system is homogeneous is all constant terms
are zero. And is a
Notice: Any homogeneous system is consistent.
Det The trivial solution of
$$Ax^2 = \overline{0}^2$$
 is $\overline{x} = \overline{0}$
A nontrivial solution of $Ax^2 = \overline{0}^2$ is only solution $\neq \overline{0}$
Theorem $Ax^2 = \overline{0}$ has a non-zero solution ist. the
system has at least one free variable.
Theorem Suppose that $Ax^2 = \overline{0}^2$ is consistent $\neq let p^2$
be a solution. Then:
solution set of $Ax^2 = \overline{0}^2$
 $Ehen \overline{q}^2 = \overline{q}^2 + \overline{p}^2 = \overline{p}^2 + \overline{v_n} | \overline{v_n}|$ is a solution of $Ax^2 = \overline{0}^2$
 $A(\overline{q}^2 - \overline{p}^2) = A\overline{q}^2 - A\overline{p}^2$
 $= \overline{0}^2 - \overline{0}^2 = \overline{0}$
therefore $\overline{q}^2 - \overline{p}^2$ is a solution of $Ax^2 = \overline{0}^2$
 $A(\overline{q}^2 - \overline{p}^2) = A\overline{q}^2 - A\overline{p}^2$
 $= \overline{0}^2 - \overline{0} = \overline{0}$
 $Ax^2 = \overline{0}$

Linear Dependence/Independence

Sunday, January 17, 2021 4:58 PM

Consider the Sollowing subsets of
$$\mathbb{R}^{2}$$

 $\left\{\begin{bmatrix} 0\\ 1 \end{bmatrix}, \begin{bmatrix} 0\\ 7 \end{bmatrix}\right\}$ Notice that neither $\begin{bmatrix} 0\\ 1 \end{bmatrix} nr \begin{bmatrix} 0\\ 7 \end{bmatrix}$ is a linear combination of the other
 $\left\{\begin{bmatrix} 1\\ 0\end{bmatrix}, \begin{bmatrix} 0\\ 1\end{bmatrix}, \begin{bmatrix} 3\\ 4\end{bmatrix}\right\}$ There is a vector which is a combination of the others
 $\frac{Def}{2}, \begin{bmatrix} V_{1} & V_{p} \end{bmatrix} \subseteq \mathbb{R}^{n}$ is linear combination of the others
 $\frac{Def}{2}, \begin{bmatrix} V_{1} & V_{p} \end{bmatrix} \subseteq \mathbb{R}^{n}$ is linearly independent if
 $N_{1}V_{1} + N_{2}V_{2} + \dots + N_{p}V_{p}^{2} = O$ has only the trivial solution
(i.e. $N_{1}, N_{2}, \dots, N_{p}$ must be zero) otherwise, it is
 $\frac{linearly dependent}{2}$
A linear dependence relation is an equation $C_{1}V_{1} + \dots + C_{p}V_{p} = O$
where C_{1}, \dots, C_{p} are not all zero.

Theorems

Sunday, January 17, 2021 5:24 PM

Set w/ Exactly One Vector

$$\{\overline{v}, \overline{v}\}$$
 is LI iff $\overline{v} \neq \overline{v}^{*}$
Set w/ Exactly Two Vectors
 $\{\overline{v}, \overline{v}\}$ is LD iff at least one vector is a scalar multiple
of the other
Set w/Two or More Vectors
Theorem (Characterization of LD sots)
Let $S = \{\overline{v}, \dots, \overline{v}\}$ othere $p \ge 2$ then S is LD iff
at least one vector in S is a linear combination of
the other vectors in S .
Theorem If $S = \{\overline{v}, \dots, \overline{v}\} \in \mathbb{R}^{n}$ and $p > n$ then S is LD
Theorem IS $S : \{\overline{v}, \dots, \overline{v}\} \in \mathbb{R}^{n}$ and $p > n$ then S is LD
Theorem If $S = \{\overline{v}, \dots, \overline{v}\} \in \mathbb{R}^{n}$ and $p > n$ then S is LD
Theorem If $columns$ of a matrix A one LI iff
 $A\overline{v} : \overline{o}$ has only the trivial solution

Matrix Transformation

Wednesday, January 20, 2021 7:24 PM

Def. A transformation / function / mapping from
$$\mathbb{R}^n$$
 to \mathbb{R}^m
is a rule that assigns to each $\overline{X} \in \mathbb{R}^n$ exactly one
vector $T(\overline{x}) \in \mathbb{R}^m$

Notation: T:
$$\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$$

Domain
 $\overrightarrow{x} \mapsto (\overrightarrow{T(x)}) \in \operatorname{image} \text{ of } \overrightarrow{x} \text{ under } T$
 $\mathbb{R}^{n} \mapsto (\overrightarrow{T(x)}) \in \operatorname{image} \text{ of } \overrightarrow{x} \text{ under } T$
 \mathbb{R} Range of $T = \underbrace{\xi} T(\overrightarrow{x}) \mid \overrightarrow{x} \in \mathbb{R}^{n} \underbrace{\xi}$
 $\frac{\operatorname{Def.}}{\operatorname{R}} \stackrel{\mathsf{M}}{\operatorname{matrix}} \stackrel{\mathsf{transformation}}{\operatorname{transformation}} \operatorname{is a map} T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$
where $\overrightarrow{x} \mapsto A\overrightarrow{x}$ for some $\operatorname{matrix} A.$ That is, $T(\overrightarrow{x}) = A\overrightarrow{x}$.
Notice: Given an $m \times n$ matrix A , if $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is the map
 $T(\overrightarrow{x}) = A\overrightarrow{x}$, then
 $\operatorname{Range} \stackrel{\mathsf{of}}{\operatorname{T}} = \underbrace{\xi} T(\overrightarrow{x}) \mid \overrightarrow{x} \in \mathbb{R}^{n} \underbrace{\xi}$
 $= \underbrace{\xi} A\overrightarrow{x} \mid \overrightarrow{x} \in \mathbb{R}^{n} \underbrace{\xi}$
 $= \underbrace{\xi} A\overrightarrow{x} \mid \overrightarrow{x} \in \mathbb{R}^{n} \underbrace{\xi}$

Linear Transformations

Wednesday, January 20, 2021 7:42 PM

Def. A transformation
$$T: V \rightarrow W$$
 is linear if
1) $T(\vec{u} + \vec{v}) = T(u) + T(v) | \vec{u}, \vec{v} \in V$
2) $T(c\vec{u}) = cT(\vec{u}) | \vec{u} \in V$, any scalar c

Theorem For any linear transformation,
$$T: V \rightarrow W$$

1) $T(\vec{o}) = \vec{o}$
2) $T((, \vec{v}, - - + C_p \vec{v}_p) = C_1 T(\vec{v}, - - C_p T(\vec{v}_p))$
Sor any vectors $\vec{v}_1, \dots, \vec{v}_p \in V \notin \text{scalars } C_1, \dots, C_p$

Standard Matrix

Wednesday, January 20, 2021 7:59 PM

Notation: In
$$\mathbb{R}^n$$
, $\overline{\mathbb{P}}_j$ is the vector whose jth entry is one
with 0's everywhere else. Also are columns of the identity matrix.
 $\overline{\mathbb{P}}_i = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \overline{\mathbb{P}}_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad i \cdots , \quad \overline{\mathbb{P}}_n = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
Theorem Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then there
exists a unique matrix A such that:
 $T(\overline{x}) = A \overline{x}$ for any $\overline{x} \in \mathbb{R}^n$

In fact, A is the max matrix whose jth column is $T(\vec{e_j})$:

$$A = \left[\left. T(\vec{e_i}) \right| T(\vec{e_i}) \right| \dots \left| \left. T(\vec{e_n}) \right] \right]$$

This is called the standard matrix for TLinear transformations are completely determined on how they act on the standard basis vectors $(\vec{e_1}, \dots, \vec{e_n})$ Onto and One-to-One

Wednesday, January 20, 2021 8:09 PM

Special Matrices and Equality

Sunday, January 24, 2021 6:55 PM

$$A_{nm} = \begin{pmatrix} a_{11} & q_{12} & q_{13} & \dots & q_{1n} \\ q_{21} & q_{22} & q_{23} & \dots & q_{2n} \\ q_{31} & q_{32} & q_{33} & \dots & q_{3n} \\ \vdots \\ q_{m_1} & q_{m_2} & q_{m_3} & \dots & q_{mn} \end{pmatrix} \qquad a_{ij} = entry in the ith vow and ith vo$$

Def A diagonal matrix is a square matrix whose non
diagonal entries are zero.
A zero matrix (denoted by O), is a matrix whose
entries are all zeroes.
Two man matrices
$$A \notin B$$
 are equal if
 $(A)_{ij} = (B)_{ij}$ for all $1 \leq i \leq m \notin 1 \leq j \leq n$

Matrix Operations

Sunday, January 24, 2021 7:00 PM

Sunday, January 24, 2021
Sunday, January 24, 2021
Let
$$A \notin B$$
 be $m \times n$ mutrices $\notin c$ be a scalar, then:
 $(A + B)_{ij} = (A)_{ij} + (B)_{ij}$
 $(cA)_{ij} = c(A)_{ij}$
 $Properties$
commutative: $A + B = B + A$
associative: $(A + B) + C = A + (B + C)$
 $distributive: (r + s)A = rA + sA$
 $distributive: r(sA) = (rs)A$

Matrix Multiplication

Sunday, January 24, 2021 7:13 PM

Reasoning

$$T(\vec{x}) = A\vec{x}$$

$$U(\vec{x}) = B\vec{x}$$
The composition $T \circ U: R^{i} \rightarrow R^{m}$ is defined by

$$R^{0} \rightarrow R^{n} \overrightarrow{\tau} R^{n}$$

$$(T \circ U)(\vec{x}) \text{ or } (T U)(\vec{x}) = T(U(\vec{x})) = T(B(\vec{x})) = A(B\vec{x})$$

$$= A(x, \vec{b}_{1} + y_{1}, \vec{b}_{2}, \dots + y_{p}\vec{b}_{p})$$

$$= A(x, \vec{b}_{1} + y_{2}, \vec{b}_{2}, \dots + y_{p}\vec{b}_{p})$$

$$= A(x, \vec{b}_{1}) + \dots + A(x_{p}\vec{b}_{p})$$

$$= A \circ B \text{ or } AB$$
Def Let A be an $m \times n$ multix i B be an $n \cdot p$ multix.
Then $AB = A[\vec{b}, 1, \dots, 1, 4\vec{b}_{p}] = [A\vec{b}, 3, 1, \dots, 1, 4\vec{b}_{p}]$
which is an $m \times p$ multix \vec{b} B be an $n \cdot p$ multix.
Then $(AB)_{ij} = \sum_{k=1}^{n} a_{ik} \times b_{kj}$
which is the dist product of the *i*th row of A with *j*th column of B

Properties of Matrix Multiplication

Sunday, January 24, 2021 7:20 PM

Let A be an nin multip
$$iB_{,L}$$
 be matrices so that the
Sollawing sums $iproducts$ are defined:
1) $A(B_{,C}) = (A_{,B})C$
2) $A(B_{+}C) = A_{,B} - A_{,C}$
3) $(B_{+}C)A = B_{,A} + C_{,A}$
4) For any scalar r , $r(A_{,B}) = (rA_{,B}) = A(rB_{,B})$
5) $T_{,m}A = A = T_{,n}$
However, in general:
1) $A_{,B} \neq B_{,A}$
2) $A_{,B} = AC \Rightarrow B = C$
3) $A_{,B} = O \Rightarrow A = O$ or $B = O$

Transpose

Sunday, January 24, 2021 7:27 PM

Def Let A be a square matrix $\notin K$ be a positive integer. Then $A^{K} = \underbrace{A \dots A}_{K \text{ copies}}$ $\underbrace{\operatorname{Def}_{is}$ Let A be an $m \times n$ matrix. The $\underbrace{\operatorname{Cranspose}_{pose}_{if}$ of A (denoted A^{T}) is the $n \times m$ matrix whose ith column is the ith row $\partial f A \cdot That is,$ $(A^{T})_{ij} = A_{ji}$ $\underbrace{\operatorname{Properbies}_{of} of transpose}_{ij}$ $i) (A^{T})^{T} = A$ 2) $(A + B)^{T} = A^{T} + B^{T}$ $\partial For any scalar r, <math>(rA)^{T} = r(A^{T})$ $H) (AB)^{T} = B^{T}A^{T}$ Inverse

Wednesday, January 27, 2021 9:49 PM

Def An non matrix A is invertible/nonsingular if there exists an non matrix such that $AC = I \notin CA = I$ Def If such a Cexists, then it is unique twe call it the inverse of A, denoted A-1 If A is not invertible, we say that A is singular Theorem Let A = [c d]. Let det (A) = ad-bc. Then A is invertible iff det(A) =0 If A is invertible, then $A^{-1} = \frac{1}{det(A)} \begin{bmatrix} d - b \\ -c & u \end{bmatrix}$

Properties of the Inverse

Wednesday, January 27, 2021 9:57 PM

Theorem. If A is an invertible non matrix, then for each

$$\vec{b} \in \mathbb{R}^n$$
, $A\vec{x} = \vec{b}$ has the unique sola. $\vec{x} = A^{-1}\vec{b}$
Theorem Let $A \notin B$ be invertible $n \times n$ matrices. Then
1) A^{-1} is invertible $\notin (A^{-1})^{-1} = A$
2) AB is invertible $\notin (AB)^{-1} = B^{-1}A^{-1}$
3) A^{-1} is invertible $\notin (A^{-1})^{-1} = (A^{-1})^{-1}$
 $Use: A \cdot A^{-1} = I \notin A^{-1} \cdot A = I$ where the I are the same

Invertibility and Elementary Matrices

Wednesday, January 27, 2021 10:02 PM

Theorem If
$$A_1, A_2, ..., A_K$$
 are invertible non-matrices,
then $A_1, A_2, ..., A_K$ is invertible $\xi (A_1, A_2, ..., A_K)^{-1} = A_K^{-1} ..., A_2^{-1} A_1^{-1}$.
Def An non elementary matrix is obtained by performing a
single elementary row operation to I_n
 E_n : $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$
 $-2R_1 + R_2 = R_2$ $R_1 = R_2$ $3R_2$
 $\begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$ $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 1 \\ 0 & 3 \end{bmatrix}$
When you multiply a matrix by an elementary matrix;
 EA = the matrix obtained by performing the same row operation
done on E to A

Wednesday, January 27, 2021 10:09 PM

$$E^{-1} = elementary matrix corresponding to the elementary row operation
that will reproduce I Copposite of the first row operation.
Theorem Ann is invertible iff A is row equivalent to In
aka A can be row reduced to In.
Notice: $A^{-1} = (E_1^{-1} \dots E_p^{-1})^{-1} = E_p \dots E_1 = E_p \dots E_1 \cdot I$$$
Calculating Inverse

Wednesday, January 27, 2021 10:16 PM

How to find A-1 If possible, row reduce [AII] to [I|A-1]

Invertible Matrix Theorem

Wednesday, January 27, 2021 10:21 PM

Theorem. (Invertible
Let A be an non matrix. Then the Sollowing statements are equivalent1) A is invertible7)
$$A\vec{x} = \vec{b}$$
 has a solution for $\vec{b} c R^n$ 2) A ~ In (row equivalent)8) Columns of A span R^n 3) A has n pirot positions9) $\vec{x} \mapsto A\vec{x}$ is onto4) $A\vec{x} = \vec{0}$ has only trivial soln10) There's some C such that $CA = I_n$ 5) Columns of A are LI 11) There's D_{n-n} such that $AD = I_n$ 6) $\vec{x} \mapsto A\vec{x}$ is one-to-one12) A^T is invertible

Invertible Linear Transformations

Wednesday, January 27, 2021 10:27 PM

Def: The map
$$T:\mathbb{R}^n \to \mathbb{R}^n$$
 is invertible if there exists $S:\mathbb{R}^n \to \mathbb{R}^n$
such that $T(S(\frac{\pi}{2})) = \overline{\chi} \notin S(T(\overline{\chi})) = \overline{\chi}$ for all $\overline{\chi} \in \mathbb{R}^n$
In this case, S is unique \notin we call it the inverse of
T, denoted T^{-1}
Theorem Let $T:\mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation w/standard matrix

A, then T is invertible iff A is invertible. • In this case, then T⁻¹ is a linear transformation & its standard matrix is A⁻¹

Vector Space Properties

Tuesday, February 2, 2021 6:29 PM

Zero Vector and Inverse Properties

Tuesday, February 2, 2021 6:38 PM

Theorem.	Let	V	be	a rector	space.	For	any	σ² ε V	é scular c:
a) 0 r				6) c c	$\vec{O} = \vec{O}$		c)	-u =	(-1) ū

Tuesday, February 2, 2021 6:39 PM

Some Examples of (Real) Vector Spaces

Set of Vectors	Addition	Scalar Multiplication	Zero Vector	
$\mathbb{R}^{n} = \{(x_{1}, \dots, x_{n}) x_{i} \in \mathbb{R} \\ \text{for all } i = 1, \dots, n \}$	$(x_1,,x_n)+(y_1,,y_n) = (x_1 y_1,,x_n+y_n)$	$c(x_1, \dots, x_n) = (cx_1, \dots, cx_n)$	(0,0,,0)	
For n 20, IPn is the set of all polynomials in t Wreal coefficients & degree atmost n	$(a_{0}+a_{1}t++a_{n}t^{n})$ + $(b_{0}+b_{1}t++b_{n}t^{n})$ = $(a_{0}+b_{0})+(a_{1}+b_{1})t$ ++ $(a_{n}+b_{n})t^{n}$	$c(a_0+a_1t++a_nt^n) = ca_0+ca_1t++ca_nt^n$	p(t)= 0, the zero polynomia	
For any $D \subseteq IR$, the set of all functions $f: D \rightarrow IR$	(f+g)(t) = f(t)+g(t)	(cf)(= cf(+)	f(t)= 0, the constant function	
IP is the set of all polynomials int unreal coefficients	usual addition of polynomials	usual scalar multiplication of polynomials	zero polynomia	
The set of all doubly infinite sequences of real numbers $\{\chi_n\}=(,\chi_{-1},\chi_{0},\chi_{1},)$	$\{x_n\}+\{y_n\}=\{x_n+y_n\}$	c{xn}={cxn}	(, 0, 0, 0,)	
$M_{mxh} = \left\{ A \mid A \text{ is an } mxn \\ matrix ul real \\ \end{array} \right.$	usual matrix addition	usual matrix scalar multiplication	nxn zero metrix	

Vector Subspaces

Tuesday, February 2, 2021 6:51 PM

Def. A subspace of a vector space V is a subset H of V such that:
a)
$$\vec{O} \in H$$

b) If $\vec{a}, \vec{v} \in H$, then $\vec{u} + \vec{v} \in H$
c) If $\vec{v} \in H$, c saular, $\vec{cu} \in H$
* A subspace of V is a subset which is a vector space

$$\begin{array}{c} \underline{Examples}\\ \hline Any \ vector \ space \ V \ has \ the \ zero \ subspace, \ & \vec{O}\vec{s}\\ a) \ \vec{O} \in & \vec{c}\vec{O}\vec{s} \ is \ true\\ b) \ \vec{O} + \vec{O} = \vec{O} \in & \vec{c}\vec{O}\vec{s} \ is \ true\\ c) \ c \cdot \vec{O} = \vec{O} \in & \vec{c}\vec{O}\vec{s} \ is \ true\\ \hline \bullet \ V \ is \ a \ subspace \ of \ itself \end{array}$$

Subspace Spanned by a Set

Tuesday, February 2, 2021 7:51 PM

Theorem. Let V be a vector space. If
$$\overline{V_1}^2 \dots \overline{V_p}^2$$
, then
Span $\overline{\xi} \, \overline{V_1}^2 \dots \overline{V_p}^2 \overline{\beta}$ is a subspace of V.
 Def . The subspace generated/spanned by $\overline{\xi} \, \overline{V_1} \dots \overline{V_p}^2 \overline{\beta}$ is
Span $\overline{\xi} \, \overline{V_1}^2 \dots \overline{V_p}^2 \overline{\beta}$.
If H is a subspace of V $\overline{\xi} \, H = Span \overline{\xi} \, \overline{V_1} \dots \overline{V_p}^2 \overline{\beta}$, then
 $\overline{\xi} \, V_1 \dots V_p \overline{\beta}$ is a generating/spanning for H.

Null, Column, Row Spaces

Tuesday, February 2, 2021 7:57 PM

Def. Let
$$A$$
 be an $m \times n$ matrix. The null space of A is
 $Nul A = \underbrace{\sum x \in \mathbb{R}^n} A \cdot \underbrace{x} = \overrightarrow{o} \cdot \underbrace{3}$
Theorem. If A is an $m \times n$ matrix, then $Nul A$ is
a subspace of \mathbb{R}^n

Def. Let
$$A$$
 be an main matrix. The row space of A is
Row $A = Span \{ \overline{zr} \}^{2} \dots \overline{rm} \}^{2}$
Theorem. If A is an main matrix, then $Row A$ is
a subspace of R^{n}

Kernel, Range of Linear Transformation Tuesday, February 2, 2021 8:14 PM

Recull : A linear transformation is a map
$$T: V \rightarrow W$$

where $V \notin W$ are vector spaces such that
 $T(\vec{w} \rightarrow \vec{v}) = T(\vec{w}) \rightarrow T(\vec{v})$
 $T(c\vec{w}) = cT(\vec{w})$
Def. The kernel / mullspace of $T: V \rightarrow W$ is the set
 $\tilde{\xi} \vec{v} \in V \mid T(\vec{v}) = \vec{O} \tilde{\xi}$
The range of T is the set $\tilde{\xi} T(\vec{x}) \mid \vec{x} \in V \tilde{\xi}$ or equivalently,
 $\tilde{\xi} \vec{y} \in W \mid T(\vec{x}) = \vec{y} \quad \vec{x} \in V \tilde{\xi}$
kernel/pullspace : Null(A) range: Col(A)
Theorem If $T: V \rightarrow W$ is a linear transformation, then the kernel
of T is a subspace of $V \notin$ the range is also a
subspace of W .

Linear Independence/Dependence Thursday, February 4, 2021 10:09 PM

Basis

Thursday, February 4, 2021 10:17 PM

Some standard basis:
1)
$$V = R^{n}$$
: $\xi \vec{e_{1}}, \vec{e_{2}}, \dots, \vec{e_{n}} \vec{\xi}$
2) $V = P_{n}$: $\xi 1, t, t^{2} \dots t^{n} \vec{\xi}$
3) $V = M_{2\times3}$: $\xi \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0$

How to find Basis For A

Thursday, February 4, 2021 10:53 PM

Given	a ma	tring A.							
Theorem	The the	busis general	soluti	A it	s the para	solu emetric	tion vect	sor or s	Arz=0in form.
Theorem	The	pivot	columus	of A	form	ab	Dusis	for	Col A
Theorem	If rows	A ~ B of E	is in 3 Sorm	row e a ba	chlon sis	Sorm, for f	then Row A	the & Ra	nonzero ow B.
More	general	applicati	on! If	H ≈	Span	$\xi \widehat{q_i}$	$\vec{u_p}$	}	
where	a,	9p el	R [°] , the	n mu	<i>trin</i> y	A = [α, [Up].
The f)īvot	columns	wi ll	form	a k	iusis	for	Н	

Spanning Set Theorem

Thursday, February 4, 2021 10:37 PM

Spanning Set Theorem
Let
$$S = \{\overline{z}, \overline{v_{p}}, \ldots, \overline{v_{p}}, \overline{z}\} \subseteq V \notin H = Span \{\overline{z}, \overline{v_{p}}, \ldots, \overline{v_{p}}\}$$

a) IS some vector $\overline{v_{k}} \in S$ is a linear combination of the other
vectors in S, then $\{\overline{z}, \overline{v_{k-1}}, \overline{v_{k+1}}, \ldots, \overline{v_{p}}\}$ still spans H
b) If $H \neq \{\overline{o}\}$, then some subset of S spans H
Theorem
If $A \sim B$, then $A\overline{x} = \overline{b} \notin B\overline{x}^{2} = \overline{b}$ have the same solutions
In particular, $\overline{v_{k}}\overline{a_{k}} + \ldots + \overline{v_{k}}\overline{a_{k}} = \overline{c}^{2}$ iff $\overline{v_{k}}\overline{b_{k}} + \ldots + \overline{v_{k}}\overline{b_{k}} = \overline{c}^{2}$
Theorem
If $A \sim B$, then $A\overline{x} = \overline{b} \notin B\overline{x}^{2} = \overline{b}$ have the same solutions
In particular, $\overline{v_{k}}\overline{a_{k}} + \ldots + \overline{v_{k}}\overline{a_{k}} = \overline{c}^{2}$ iff $\overline{v_{k}}\overline{b_{k}} + \ldots + \overline{v_{k}}\overline{b_{k}} = \overline{c}^{2}$
Theorem
If $A \sim B$, then $Row A = Row B$

Dimensions of a Vector Space

Tuesday, February 9, 2021 2:19 PM

Con a vector space have more than one basis? Yes.
Is the number of vectors in a basis unique? Yes.
Theorem. If V is a vector space w/ basis
$$\beta = \xi = \xi_1, \dots, \xi_n = \xi_n$$

then any set in β containing more than n vectors
is linearly dependent.
Theorem. If V is a vector space all basis of size n ,
then every basis of V has exactly n vectors.
Pef A vector space if finite-dimensional if it is spanned
by a finite set. Otherwise it's infinite-dimensional.
If V is finite dimensional, then the dimension of V
is the number of vectors in a basis for V.
The dimension of $\xi = \delta = \delta$.
Notetion: dim (R^n) = n
dim (P_n) = $n = n$
P is infinite-dimensional

Subspaces of Finite Dimensional Space

Tuesday, February 9, 2021 2:32 PM

Rank and Nullity

Tuesday, February 9, 2021 2:38 PM

Invertible Matrix Theorem Cont.

Tuesday, February 9, 2021 2:52 PM

If A is an non matrix!
13) Columns of A form a basis for
$$IR^n$$

14) (ol A = IR^n
15) rank A = n
16) nul A = $\Xi \vec{O} \vec{S}$
17) nullity A = 0

Coordinate Systems

Tuesday, February 9, 2021 2:55 PM

Theorem (Unique representation theorem) Let $\mathcal{B} = \{\overline{2}, \overline{5}, \dots, \overline{5}n\}$ be a basis for a vector space V. Then for euch $\overline{N} \in V$, there <u>enjots</u> unique scalars c_1, \dots, c_n such that $c_1 \cdot \overline{5}i + \dots + c_n \overline{5}n^2 = \overline{N}$

Def Let
$$\beta = \{ b_1, \dots, b_n \}$$
 be a basis for a vector space V.
Let $\vec{x} \in V$. If $\vec{x}' = c_1 \vec{b}_1 + \dots + c_n \vec{b}_n$, then:
1) $c_1 \dots + c_n$ are the coordinates of \vec{x}' relative to basis β
2) $[\vec{x}]_{\beta} = \begin{bmatrix} c_1 \\ c_n \end{bmatrix}$ is the coordinate vector of \vec{x}' relative to β
3) $\vec{x} \mapsto [\vec{x}]_{\beta}$ is the coordinate mapping determined by β

Change of Coordinate Matrix Tuesday, February 9, 2021 3:10 PM

Def let
$$\beta = \{ \{ 5, ..., 5n \}$$
 be a basis for \mathbb{R}^n . The
change of coordinates matrix from β to the std. basis of \mathbb{R}^n is:
 $P_{\beta} = \left[5, |...., |5n \right] \notin \mathbb{R} = P_{\beta} \left[\mathbb{R}^n \right]_{\beta}$ for any $\mathbb{R}^n \in \mathbb{R}^n$
Theorem If P_{β} is the change of coord matrix from β to the
stundard matrix for \mathbb{R}^n , then $\left[\mathbb{R} \right]_{\beta} = P_{\beta}^{-1} \mathbb{R}^n$

Isomorphism

Tuesday, February 9, 2021 3:17 PM

Example An isomorphism from
$$P_2$$
 onto R^3 :
Take the coordinate mapping $T:P_2 \rightarrow R^3$ where
 $\beta = \{1, t, t^2\} \notin T(p(t)) = [p(t)]_\beta$ is an isomorphism
by the theorem above. P_2 is isomorphic to R^3

Change of Basis

Wednesday, February 10, 2021 9:08 PM

biven two different bases for a vector space, how are the coordinate vectors relative to one basis related to the coordinate vectors relative to the other? Theorem Let $\beta = \frac{1}{2} \frac{1}{5}, \dots, \frac{1}{5}n \frac{3}{5}, \gamma = \frac{1}{2} \frac{1}{5}, \dots, \frac{1}{5}n \frac{3}{5}$ be bases for V.

Then there exists a unique non matrix P
such that
$$p_{FB} [\vec{x}]_B = [\vec{x}]_F$$
 for $x \in V$.
 $p_{FB} = [[5_i]_F] [[5_2]_F] ... | [5_n]_F]$
which is called the change-of-coordinates matrix

from $(\beta t) = \beta from (\beta t) = \beta from (\beta t) = \beta from (\beta t) = \beta from \beta from (\beta t) = \beta from \beta from the transformation of transformation$

Finding the Change of Basis Matrix Wednesday, February 10, 2021 9:24 PM

biven
$$\beta = \frac{2}{5} \frac{1}{5} \dots \frac{1}{5n} \frac{3}{5}$$
 and $\gamma = \frac{2}{5} \frac{1}{5} \dots \frac{1}{5n} \frac{3}{5}$ to find $\frac{1}{5} \frac{1}{5} \frac{1}{5}$

Example

Determinants

Sunday, February 14, 2021 9:35 PM

Recall: det $(\begin{bmatrix} a & b \\ c & d \end{bmatrix}) = ad - bc$

• If
$$n=1$$
, then $\det A = \det [a_{11}] = a_{11}$
• If $n \ge 1$, then $\det A = a_{11} \cdot \det A_{11} - a_{12} \cdot \det A_{12} + \dots$
 $= \sum_{j=1}^{n} (-1)^{(j+1)} a_{ij} \cdot \det A_{ij}$
where A_{ij} is the $(n-1) \times (n-1)$
matrix obtained by removing
the (st row and jth column of A

Cofactor Expansion

Sunday, February 14, 2021 9:42 PM

Def. The
$$(i, j)$$
 - cofactor of A is $C_{ij} = (-1)^{(i+j)}$. det A_{ij}
Theorem. Let A be an new matrix where $n \ge 2$. Then
1) det $A = \sum_{j=1}^{n} a_{ij} \cdot C_{ij}$ which is the cofactor expansion across the ith now
2) det $A = \sum_{j=1}^{n} a_{ij} \cdot C_{ij}$ which is the cofactor expansion across the jth column

Determinant from Triangular Matrix

Sunday, February 14, 2021 9:51 PM

Properties of Determinants

Wednesday, February 17, 2021 3:25 PM

$$T\frac{hearen}{hearen}$$
Let A be an non matrix.
a) If B is obtained by adding a multiple of one row of A
to another row of A then det B = det A
b) If B is obtained by interchanging two rows of A
then det B = - det A
c) If B is obtained by multiplying one row by scalar k
then det B = K det A
Theorem IF U is obtained from A wing only yow interchanges treplacements,
and U is in row echelin form, then U is triangular f
det A = $\begin{cases} C-10^{\circ} \cdot \det U & if A is invertible \\ O & if A is not invertible \\ O & if A is not invertible \\ Theorem det (AF) = det A
Theorem det (AB) = (det A)(det B)$

Linearity Properties

Wednesday, February 17, 2021 3:39 PM

Is the det: Mnin HR a linear transformation? No

Honever, we get a linear transformation if we Six all but one column of a matrix: Let A be an non matrix. Define T: $\mathbb{R}^n \mapsto \mathbb{R}$ by $T(\overline{x}) = det \left[\overline{\alpha_i} \mid \overline{\alpha_2} \cdots \mid \alpha_{j-1} \mid \overline{x} \mid \alpha_{j-1} \cdots \mid \alpha_n\right]$ This is a linear Sunction b/c $T(\overline{x}' - \overline{y'}) = T(\overline{x'}) + T(\overline{y'})$ (by cofactor expansion) $T(c\overline{x'}) = cT(\overline{x'})$

General Formulas with Determinant

Wednesday, February 17, 2021 3:46 PM

Some general formulus if A is an
$$n * n$$
 matrix.
• det $(A^m) = (det A)^m$
• det $(kA) = k^n \cdot det A$
• det $(A^{-i}) = \frac{1}{det A}$

Cramer's Rule and Inverse Formula

Wednesday, February 17, 2021 3:49 PM

Cramer's Rule: Let A be an non invertible matrix. Then for any

$$\vec{B} \in \mathbb{R}^n$$
, the unique solution. $\vec{x} = \begin{bmatrix} N_i \\ N_i \end{bmatrix}$ of $\vec{A} \cdot \vec{x}' = \vec{b}^2$
is given by $N_i = \frac{\det(A_i, (\vec{b}))}{\det(A)}$ for $i = 1, ..., n$,
where A_i (\vec{b}^2) is the matrix obtained by replacing
the *i*th column of \vec{A} of \vec{b}
Inverse Formula: Let \vec{A} be an non-matrix. Then

LAUCINC Formation. Let
$$f$$
 be an $n \ge n$ matrix. Then
 $A^{-1} = \frac{1}{det A} \cdot adj A$
where the adjugate/classical adjoint of A
is defined by:
 $(adj A)_{ij} = C_{ji} = (C_{ij})^T$
so $adj A$ is the transpose of the matrix of cofactors.

Volume/Area of Parallelopiped Shapes Wednesday, February 17, 2021 4:10 PM

Theorem Let
$$\overline{a_{j}}$$
 be the jth column of A
1) If A is a 2×2 matrix, then the area of the parallelogram
determined by $\overline{a_{i}} \notin \overline{a_{2}}$, $\overline{a_{3}} \mid det A|$
2) If A is a 3×3 matrix then the volume of the possible/piped
determined by $\overline{a_{i}}, \overline{a_{2}}, \overline{a_{3}} \mid 2 \mid det A|$
Theorem For T: V=> W \notin S \subseteq V, let T(S) = $\underbrace{\sum}_{i=1}^{n} T(n^{2}) \mid \overline{n} \in S \underbrace{3}_{i=1}$
1) Let T: $R^{2} \rightarrow R^{2}$ be the linear transformation of std matrix A .
If S is a region in R^{2} of $\underbrace{\sum}_{i=1}^{n} v(f_{i}) = \underbrace{\sum}_{i=1}^{n} v$

so the volume of
$$E = |det A| \cdot vo| S = |2 \cdot 3 \cdot 4| \cdot \frac{4}{3}\pi = 32\pi$$

Eigenvalue, Eigenvector, Eigenspace Tuesday, February 23, 2021 8:16 PM

Def. Let A be an non matrix. An eigenvector of A is a
non zero vector
$$\vec{x} \in |R^n$$
 such that $A\vec{x} = 2\vec{x}$ for
some scalar λ . We call λ an eigenvalue of A \notin
we say that \vec{x} is an eigenvector corresponding to λ
Netice $A\vec{x} = \vec{x}$ iff $A\vec{x} - \lambda\vec{x} = \vec{0}$ iff $A\vec{x} - \lambda I\vec{x} = \vec{0}$
iff $(A - \lambda I)\vec{x} = \vec{0}$
This implies that:
 $\cdot \lambda$ is an eigenvalue of A iff $(A - \lambda I)\vec{x} = \vec{0}$
has
non trivial solutions
 $\cdot \vec{x}$ is an eigenvector of A corresponding to λ ; for \vec{x} is a
non trivial solution for $(A - 2I)\vec{y} = \vec{0}$
Def. Let λ be an eigenvalue of A. The eigenspace of
A corresponding to λ is Nul $(A - \lambda I)$, is the
set containing $\vec{0}$ and all eigenvectors of A corresponding
to λ .

Finding Eigenvalues

Tuesday, February 23, 2021 8:29 PM

Theorem	The eigenvalues of a triangular matrix are its diagonal entries.
Theorem	If Vi Vr are eigenvectors of A corresponding to distinct eigenvalues 2,
Theorem	O is an eigenvalue of A iff A is not invertible.
	benerally: solve the characteristic equation det(A-ZI) = 0

Characteristic Equation

Tuesday, February 23, 2021 9:17 PM

Def let A be an ann malrin. The characteristic equation
of A is det
$$(A - \lambda I) = 0$$
 The characteristic polynomial
is det $(A - \lambda I)$ is it is a polynomial in λ of degree n
If λ_0 is an eigenvalue of A, then the algebraic multiplicity
of λ_0 is the largest integer such that $(\lambda - \lambda_0)^{K}$ divides
the characteristic polynomial.
Ex det $(A - \lambda I) = \lambda^2 - \lambda - 6$
 $= (\lambda - 3)(\lambda - 2)^{I}$ of $\lambda = 1$
 $det(A - \lambda I) = (\lambda - 1)^{I}(\lambda - 2)^{I}$ of $\lambda = 1$
 $det(A - \lambda I) = (\lambda - 1)^{I}(\lambda - 2)^{I}$

Similarity

Tuesday, February 23, 2021 9:26 PM
Diagonalization

Thursday, February 25, 2021 1:39 PM

Diagonalization Theorem Let A be an non matrix. Then A is
diagonalizable iff A has a LI eigenvectors.
In fact,
$$A = PDP^{-1}$$
 where D is diagonal
iff columns of p are a LI eigen vectors
of A & in this case the diagonal entries
of P are eigenvalues of A corresponding
respectively to the eigen vectors in P.
 $A = PPP^{-1}$ where $P = [V_1|\dots|V_n]^2$ where $V = V_n$ are the litering the litering

$$H = [PPP where P = \left[\overline{V}_{1} \right] \cdots \left[\overline{V}_{p} \right] where \overline{V}_{1} \cdots \overline{V}_{p} \quad are \quad the \quad LI \; eigenvectors$$

$$D = \left[\begin{array}{c} \lambda_{1} \\ \vdots \\ \ddots \\ \lambda_{n} \end{array} \right] \quad are \quad the \quad corresponding \quad eigenvalues$$

Properties of Diagonalizable Thursday, February 25, 2021 2:07 PM

Theorem	Let 2, 2p be distinct eigenvalues EA + 11
	En Enp be the corresponding eigenspaces.
	If S, is a LI subset of Ez; , then S, U. USp
Thesiem	is LI. Let A be an non matrix. If A has a distinct eigenvalues, then A is diagonalizable.
Theorem	Lot A be an num matrix we distinct eigenvalues $\lambda_1, \dots, \lambda_p$:
	 a) For all i = 1p, dim (eigenspace for λ;) ≤ algebraic multiplicity of λ; bespectric multiplicity: dim (eigenspace for λ;) b) A is diagonalizable iff ²/_{E1} geometric multiplicity of λ; = n iff the characteristic polynomial splits into linear factors and the algebraic multiplicity = geometric multiplicity c) If A is diagonalizable \$ β; is a basis for the eigenspace for λ; then βU Uβp is an eigenvector

Use of Diagonalization

Thursday, February 25, 2021 2:22 PM

If A	īs	diagonalizable	, then	for som	ne invertibl	e matrix	Pé	diagonal
mutrix	D,	A = PDP - ·	Then:					
A ^k =	(P,	$DP^{-\prime})^{k}$						
÷	(P <u> </u>) (P D P ⁻	") (,	PD P-')				
-	PD	I IDP	- 1					
Ţ	PDK	ρ-'						
wl e o	here ach	the power digonal eleme	of a rt.	dia gone	al motion	is the	e pou	er of

Dot Product

Friday, February 26, 2021 4:22 PM

Def Let
$$\vec{u}, \vec{v} \in \mathbb{R}^n$$
. The dot product of $\vec{u} \notin \vec{v}$ is
 $\vec{u} \cdot \vec{v} = V_1 \cdot V_1 + V_2 \cdot V_2 + \dots + U_n \cdot V_n$ which is scalar
The dot product is an example of an inner product.
Def The length / norm of \vec{u} is:
 $\|\vec{u}'\| = \sqrt{\vec{u} \cdot \vec{u}} = \sqrt{u_1^2 + u_2^2 + \dots + U_n^2}$
Properties Let $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$ is a becaused on then
a) $\vec{v} \cdot \vec{v} = \vec{v} \cdot \vec{u}$
b) $(\vec{u} + \vec{v}) \cdot \vec{w} = \vec{v} \cdot \vec{w} + \vec{v} \cdot \vec{v}$
c) $(c \vec{w}) \cdot \vec{v} = c(\vec{u} \cdot \vec{v}) = \vec{v} \cdot (c \vec{v})$

d) $\vec{u} \cdot \vec{u} \ge 0 \notin \vec{u} \cdot \vec{u} = 0 \text{ iff } \vec{u} = \vec{o}$

e) $\|\vec{\omega}\|^2 = \vec{\omega} \cdot \vec{\omega}$

Unit Vector

Friday, February 26, 2021 5:12 PM

Def A unit vector is a vector of length 1.
We can find a unit vector going in the same direction
as
$$\vec{v} \in \mathbb{R}^n$$
 and $\vec{v} \neq 0$
unit $\vec{v} = \frac{\vec{v}}{\|\vec{v}\|}$
and this process is called normalizing vector \vec{v}

Distance

Friday, February 26, 2021 5:14 PM

Def. For W, V & R", the distance between with is. $dist(\vec{x}, \vec{y}) = \|\vec{x} - \vec{y}'\|$

Friday, February 26, 2021 5:19 PM

 $Def \vec{u}, \vec{v} \in \mathbb{R}^n$ are orthogonal if $\vec{u} \cdot \vec{v} = 0$

Pythagorean Theorem: w & ure orthogonal iff 11w1/2 + 11v112 = 11w + v1/2

Friday, February 26, 2021 5:29 PM

Def Let W be a subspace of
$$\mathbb{R}^{n}$$
 + let $\mathbb{Z} \in \mathbb{R}^{n}$. Then \mathbb{Z} is
orthogonal to W if \mathbb{Z}^{n} is orthogonal to every vector in W.
The orthogonal complement of W is
 $W^{\perp} = \{\mathbb{Z} \in \mathbb{R}^{n} \mid \mathbb{Z} : \overline{W} = 0, \ \overline{W} \in W \}$
Properties Let W be a subspace of \mathbb{R}^{n} . Then
a) $\mathbb{R} \in W^{\perp}$ iff \mathbb{R} is orthogonal to every vector in
a set that spans W.
b) W^{\perp} is a subspace of \mathbb{R}^{n}
c) $(W^{\perp})^{\perp} = W$
d) $W \land W^{\perp} = \{\mathbb{Z}^{n}\}^{2}$
Theorem For any matrix A,
i) $(\mathbb{R}_{ow} A)^{\perp} = |V_{u}| A$
2) $(Co|A)^{\perp} = |V_{u}| A^{T}$

Inner Product, Inner Product Space

Monday, March 1, 2021 3:48 PM

Deb let V be a vector space. An inner product on V is a
Sunction that assigns to each pair of vectors
$$\vec{u}, \vec{v} \in V$$

to a scalar denoted $\langle \vec{u}, \vec{v} \rangle$
It must satisfy the Sollowing axioms:
For all $\vec{v}, \vec{v}, \vec{w} \in V$ and any scalar c:
1) $\langle \vec{u}, \vec{v} \rangle = \langle \vec{v}, \vec{u} \rangle$
2) $\langle \vec{u} + \vec{v}, \vec{w} \rangle = \langle \vec{u}, \vec{w} \rangle + \langle \vec{v}, \vec{w} \rangle$
3) $\langle c\vec{u}, \vec{v} \rangle = c \langle \vec{u}, \vec{v} \rangle = 0$ iff $\vec{u} = \vec{0}$
V with an inner product $\langle z \rangle$ is an inner product space

Examples of Inner Product Spaces Monday, March 1, 2021 3:55 PM

The following are examples of inner product spaces:
• Rⁿ w/ dot product
• Fix to to Lo real numbers. Take Po w/ <, > defined
by = p(to) + q(to) p(to) q(to)
• C[a,b] = Econtinous functions on [a,b] & w/ <, > defined by
 =
$$\int_{a}^{b}$$
 f(t). g(t) dt

Properties of Inner Product Monday, March 1, 2021 4:01 PM

Def. Let V be an inner product space will inner product

$$\zeta, \rangle$$
. For $\overline{w}, \overline{v} \in V$:
1) The length / norm of \overline{w} is $||\overline{w}|| = \sqrt{\langle \overline{w}, \overline{w} \rangle}$
2) \overline{w} is a unit vector if $||\overline{w}|| = 1$
3) The distance between $\overline{w} \notin \overline{v}$ is $||\overline{w} - \overline{v}||$
4) $\overline{w} \notin \overline{v}$ are orthogonal if $\langle \overline{w}, \overline{v} \rangle = 0$
5) $||\overline{w}||^2 = \langle \overline{w}, \overline{w} \rangle \notin ||c\overline{w}|| = |c| \cdot ||\overline{w}||$

Cauchy-Schwarz Inequality

Monday, March 1, 2021 4:57 PM

$$\frac{Theorem}{If} \left(Cauchy - Schwarz Inequality \right)$$

$$If \vec{w}, \vec{v} \in V, \text{ then } |\langle \vec{u}, \vec{v} \rangle| \leq ||\vec{u}|| \cdot ||\vec{v}||$$

$$\frac{Theorem}{Theorem} \left(Triangle Inequality \right)$$

$$If \vec{u}, \vec{v} \in V, \text{ then } ||\vec{w} + \vec{v}|| \leq ||\vec{w}|| + ||\vec{v}||$$

Orthogonal Sets

Wednesday, March 3, 2021 6:04 PM

Orthonormal

Wednesday, March 3, 2021 6:24 PM

Orthogonal Matrix

Wednesday, March 3, 2021 6:27 PM

Def. An orthogonal matrix is a square matrix such that

$$U^{-1} = U^{T}$$
, which means that $U^{T}U = I_{n}$
Theorem An max matrix U has orthonormal columns
iff $U^{T}U = I_{n}$
Theorem Let U be an max matrix with orthonormal columns
 $i | e \in \mathbb{R}, \ g \in \mathbb{R}^{n}$. Then
 $i | || U_{\overline{X}} || = || \overline{X} ||$
 $2) (U_{\overline{X}}) \cdot (U_{\overline{y}}) = \overline{X} \cdot \overline{y}$
 $3) (U_{\overline{X}}^{-1}) \cdot (U_{\overline{y}}^{-1}) = 0$ iff $\overline{X} \cdot \overline{Y} = \overline{0}$

Orthogonal Projection (Vector to Vector)

Wednesday, March 3, 2021 6:34 PM

Det Let
$$\vec{y}, \vec{u} \in \mathbb{R}^{n}$$
 where $\vec{v} \neq 0$. Let \vec{L} be the line
through $\vec{\partial} \notin \vec{u}$. Then
onthogonal projection of \vec{y} onto \vec{L} is $\hat{y} = proj_{\vec{L}}\vec{y} = \frac{\vec{y} \cdot \vec{u}}{\vec{u} \cdot \vec{u}} \cdot \vec{u}$
the component of \vec{y} onthogonal to \vec{u} is $\vec{z} = \vec{y} \cdot \vec{y}$
Ex
 \vec{y}

Orthogonal Decomposition (Vector to Subspace) Tuesday, March 9, 2021 10:38 PM

$$\frac{\text{Theorem}(Orthogonal Decomposition): Let W be a subspace of Rn. Then
each $\vec{y} \in \mathbb{R}^{n}$ can be written uniquely in the form
 $\vec{y} = \hat{y} + z$ where $\hat{y} \in W$ and $z = W^{\perp}$.
Formula: if $\vec{z} = \vec{u}, \dots = \vec{T_{p}} \vec{z}$ is an orthogonal basis for W, then:
orthogonal projection of \vec{y} onto W:
 $P^{ro}\hat{j}w \vec{y} = \hat{y} = \frac{\vec{y} \cdot \vec{u}}{\vec{u}_{1} \cdot \vec{u}_{1}} \cdot \vec{u}_{1} + \frac{\vec{y} \cdot \vec{u}}{\vec{u}_{2} \cdot \vec{u}_{3}} \cdot \vec{u}_{2} + \dots + \frac{\vec{y} \cdot \vec{u}_{p}}{\vec{q}^{2} \cdot \vec{q}^{2}} \cdot \vec{u}_{p}$
 $\hat{\xi} component of \vec{y} orthogonal to W:
 $Z = \vec{y} - projw \vec{y} = \vec{y} - \hat{y}$$$$

Best Approximation Theorem

Tuesday, March 9, 2021 10:46 PM

Theorem Let
$$W$$
 be a subspace of \mathbb{R}^n filet $\vec{y} \in \mathbb{R}^n$. Then projucy
is the closest point in W to \vec{y} . That is
 $\|\vec{y} - projucy\| \le \|\vec{y} - \vec{v}\|$ for any $\vec{v} \in W$ where $\vec{v} \ge projucy$.
We call $projucy$ the bast approximation to \vec{y} by elements of W .

Projection onto Orthonormal Set Tuesday, March 9, 2021 10:52 PM

Theorem If
$$\Xi \overline{u}_1^2 \dots \overline{u}_p^2 \overline{g}$$
 is an orthonormal busis for a subspace
 W of \mathbb{R}^n , then for all $\overline{y}^2 \in \mathbb{R}^n$:
1) $p^{roj}w\overline{y}^2 = (\overline{y} \cdot \overline{u}_1^2)\overline{u}_1^2 + (\overline{y} \cdot \overline{u}_2^2)\overline{u}_2^2 + \dots + (\overline{g}^2 \cdot \overline{u}_p^2)\overline{u}_p^2$
2) If $U = [u_1|\dots |u_p]$, then $p^{roj}w\overline{y}^2 = UU^T\overline{y}$.

Gram-Schmidt Process

Wednesday, March 10, 2021 4:56 PM

$$\vec{V}_{i}^{2} = \vec{\chi}_{i}^{2}$$

$$\vec{V}_{2}^{2} = \vec{\chi}_{2}^{2} - \frac{\vec{\chi}_{2} \cdot \vec{V}_{i}}{\vec{V}_{i} \cdot \vec{V}_{i}} \cdot \vec{V}_{i}$$

$$\vec{V}_{3}^{2} = \vec{\chi}_{3}^{2} - \frac{\vec{\chi}_{3} \cdot \vec{V}_{i}}{\vec{V}_{i} \cdot \vec{V}_{i}} \cdot \vec{V}_{i}^{2} - \frac{\vec{\chi}_{3}^{2} \cdot \vec{V}_{2}}{\vec{V}_{2} \cdot \vec{V}_{2}} \cdot \vec{V}_{2}$$

$$\vec{V}_{p}^{2} = \vec{\chi}_{p}^{2} - \sum_{i=1}^{p} \frac{\vec{\chi}_{p} \cdot \vec{V}_{i}}{\vec{V}_{i} \cdot \vec{V}_{i}} \cdot \vec{V}_{i}$$

Then $\xi \overrightarrow{V}_{i} \cdots \overrightarrow{V}_{p} \xi$ is an orthogonal basis for $W \xi$ ξ norm $\overrightarrow{V}_{i} \cdots \overrightarrow{V}_{p} \xi$ is an orthonormal basis for W. Also span $\xi \overrightarrow{N}_{i} \cdots \overrightarrow{N}_{k} \xi = span \xi \overrightarrow{V}_{i} \cdots \overrightarrow{V}_{k} \xi$ for $1 \le k \le p$

QR Decomposition

Wednesday, March 10, 2021 5:35 PM

Theorem Let A be an maximum matrix with LI columns, then
A can be factored as
$$A = QR$$
 where
Q is an maximum whose columns
R is an nan upper triangular invertible matrix whose diagonal entries
Let Q be the matrix whose columns are obtained by
applying the orthonormal gram-schmidt process on the column
vectors of A
Let $R = Q^T A$

Diagonalization of Symmetric Matrices Thursday, March 18, 2021 4:29 PM

Def. Let A be a matrix. A is symmetric if
$$A^{T} = A$$
.
so and an is symmetric about its main diagonal
 $E_{N} \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$ is symmetric
Def. A is orthogonally diagonalizable if there exists an orthogonal matrix
 $P \neq a$ diagonal matrix D such that $A = PDP^{T} = PDP^{-1}$
Theorem Let A be an new matrix. Then
A is orthogonally diagonalizable
iff A is symetric
iff A has orthonormal set of n origen vectors.

Spectral Theorem for Symmetric Matrices

Thursday, March 18, 2021 4:42 PM

Singular Value Decomposition

Thursday, March 18, 2021 4:47 PM

We can decompose an m×n matrix A: Amen = Umen Emen VT where U, V are onthogonal